778 research outputs found

    Zooplankton distribution across the brackish and freshwater zone of the Scheldt estuary

    Get PDF
    Zooplankton diversity and distribution in the brackish and freshwater zone of the Scheldt is studied, as a continuation of preceeding studies carried out in the periods 1967-1669 and 1995-1997. We report on species diversity and abundancy of the zooplankters, collected on a monthly basis, in 20 sampling sites along the salinity gradient. Calanoids occur mainly in the brackish part, with Eurytemora affinis, Acartia tonsa and Eudiaptomus gracilis as the dominant species. In the freshwater region, rotifers (i.e. Brachionus calyciflorus, Keratella quadrata, among others), cyclopids (i.e. Acanthocyclops robustus, Cyclops vicinus) and cladocerans (Daphnia longispina, Bosmina longirostris...) are the dominant zooplankters. In addition, we report the presence of several species which were not detected in the former studies, such as the rotifers Brachionus leydigi var. quadratus, Notholca labis, Platyias quadricornis, Euchlanis dilatata, Gastropus hyptopus, Testudinella patina, Polyarthra dolichoptera and Trichotria sp. ; the cladocerans Acroperus harpae and Biapertura affinis, and the harparticoid Bryocamptus (Bryocamptus) minutus

    Updating the zooplankton species list for the Belgian part of the North Sea

    Get PDF
    Many marine species are threatened, and given the importance of biodiversity indices in the current European marine policy, taking stock of existing species and species diversity is crucial. Zooplankton form the basis of the pelagic food web, acting as staple food for fish larvae and adult pelagic fish, but are very susceptible to a changing climate. Inventorying zooplanktonic diversity is therefore important. Based on monthly sampling campaigns in 2009 and 2010, an update is provided on the zooplankton species list for the Belgian part of the North Sea. A total of 137 taxa are listed, some of which had rarely or never been observed in the area. This inventory revealed several species new to the Belgian marine species list: the calanoid copepod Metridia lucens, the cyclopoids Oithona similis and Giardella callianassae, the hydrozoans Amphinema dinema and Eutima gracilis, the mysid Acanthomysis longicornis, the polychaete worm Tomopteris helgolandica, the cladoceran Penilia avirostris and the monstrilloid copepod Cymbasoma germanicum. Additionally, we identified several males of C. germanicum, which have never been described before. Brief discussions are presented on spatial distribution and abundance of all taxa

    Serum HMGB1 levels are independently associated with glucose clamp-derived measures of insulin resistance in women with PCOS

    Get PDF
    Purpose: PCOS is associated with low grade inflammation which could play a role in insulin resistance and ovarian dysfunction. Preliminary findings suggested that serum levels of HMGB1, a cytokine involved in inflammation, might be altered in women with PCOS. Primary aim of this study was to assess whether HMGB1 serum concentrations are associated with PCOS and with the state of insulin resistance of these women. Methods: Sixty women with PCOS, selected to have a similar proportion of subjects with altered or normal insulin sensitivity, and 29 healthy controls were studied. Serum HMGB1 levels were compared in subgroups of PCOS women and controls. In PCOS women, insulin sensitivity was assessed by the glucose clamp technique and HMGB1 was measured at baseline and after acute hyperinsulinemia. Results: HMGB1 levels were similar in women with PCOS and controls and no elements used for diagnosing PCOS were associated with serum HMGB1. However, HMGB1 concentrations were higher in insulin-resistant vs insulin-sensitive PCOS women (p = 0.017), and inversely associated with insulin-induced total and non-oxidative glucose metabolism. In both subgroups of PCOS women, serum HMBG1 levels significantly increased after acute hyperinsulinemia. Conclusions: These data suggest that HMGB1 levels are not associated with PCOS per se, but with insulin resistance. Further research should establish the underlying nature of this relationship, and whether this protein might play a role in the metabolic complications of PCOS

    Protection and mechanism of action of a novel human respiratory syncytial virus vaccine candidate based on the extracellular domain of small hydrophobic protein

    Get PDF
    Infections with human respiratory syncytial virus (HRSV) occur globally in all age groups and can have devastating consequences in young infants. We demonstrate that a vaccine based on the extracellular domain (SHe) of the small hydrophobic (SH) protein of HRSV, reduced viral replication in challenged laboratory mice and in cotton rats. We show that this suppression of viral replication can be transferred by serum and depends on a functional IgG receptor compartment with a major contribution of FcRI and FcRIII. Using a conditional cell depletion method, we provide evidence that alveolar macrophages are involved in the protection by SHe-specific antibodies. HRSV-infected cells abundantly express SH on the cell surface and are likely the prime target of the humoral immune response elicited by SHe-based vaccination. Finally, natural infection of humans and experimental infection of mice or cotton rats does not induce a strong immune response against HRSV SHe. Using SHe as a vaccine antigen induces immune protection against HRSV by a mechanism that differs from the natural immune response and from other HRSV vaccination strategies explored to date. Hence, HRSV vaccine candidates that aim at inducing protective neutralizing antibodies or T-cell responses could be complemented with a SHe-based antigen to further improve immune protection

    Identification of Low Allele Frequency Mosaic Mutations in Alzheimer Disease

    Get PDF
    Germline mutations ofAPP,PSEN1, andPSEN2 genes cause autosomal dominant Alzheimer disease (AD). Somatic variants of the same genes may underlie pathogenesis in sporadic AD, which is the most prevalent form of the disease. Importantly, such somatic variants may be present at very low allelic frequency, confined to the brain, and are thus very difficult or impossible to detect in blood-derived DNA. Ever-refined methodologies to identify mutations present in a fraction of the DNA of the original tissue are rapidly transforming our understanding of DNA mutation and their role in complex pathologies such as tumors. These methods stand poised to test to what extend somatic variants may play a role in AD and other neurodegenerative diseases

    Structure and expression of GSL1 and GSL2 genes encoding gibberellin stimulated-like proteins in diploid and highly heterozygous tetraploid potato reveals their highly conserved and essential status

    Get PDF
    Background: GSL1 and GSL2, Gibberellin Stimulated-Like proteins (also known as Snakin-1 and Snakin-2), are cysteine-rich peptides from potato (Solanum tuberosum L.) with antimicrobial properties. Similar peptides in other species have been implicated in diverse biological processes and are hypothesised to play a role in several aspects of plant development, plant responses to biotic or abiotic stress through their participation in hormone crosstalk, and redox homeostasis. To help resolve the biological roles of GSL1 and GSL2 peptides we have undertaken an in depth analysis of the structure and expression of these genes in potato. Results: We have characterised the full length genes for both GSL1 (chromosome 4) and GSL2 (chromosome 1) from diploid and tetraploid potato using the reference genome sequence of potato, coupled with further next generation sequencing of four highly heterozygous tetraploid cultivars. The frequency of SNPs in GSL1 and GSL2 were very low with only one SNP every 67 and 53 nucleotides in exon regions of GSL1 and GSL2, respectively. Analysis of comprehensive RNA-seq data substantiated the role of specific promoter motifs in transcriptional control of gene expression. Expression analysis based on the frequency of next generation sequence reads established that GSL2 was expressed at a higher level than GSL1 in 30 out of 32 tissue and treatment libraries. Furthermore, both the GSL1 and GSL2 genes exhibited constitutive expression that was not up regulated in response to biotic or abiotic stresses, hormone treatments or wounding. Potato transformation with antisense knock-down expression cassettes failed to recover viable plants. Conclusions: The potato GSL1 and GSL2 genes are very highly conserved suggesting they contribute to an important biological function. The known antimicrobial activity of the GSL proteins, coupled with the FPKM analysis from RNA-seq data, implies that both genes contribute to the constitutive defence barriers in potatoes. The lethality of antisense knock-down expression of GSL1 and GSL2, coupled with the rare incidence of SNPs in these genes, suggests an essential role for this gene family. These features are consistent with the GSL protein family playing a role in several aspects of plant development in addition to plant defence against biotic stresses. © 2014 Meiyalaghan et al.; licensee BioMed Central Ltd
    corecore