1,095 research outputs found

    Economic Impacts of Planned Transportation Investments in New Jersey

    Get PDF
    This report demonstrates that New Jersey's plans to invest in transportation infrastructure over the next decade will result in nearly 27,000 full-time jobs per year. It also shows that the state's transportation investments will generate economic impacts in the form of employment, income, gross domestic product, and state and local tax revenues. The report is the result of a joint study conducted by the Heldrich Center and the Center for Urban Policy Research at Rutgers University's Edward J. Bloustein School of Planning and Public Policy

    Pitch-angle scattering in magnetostatic turbulence. I. Test-particle simulations and the validity of analytical results

    Full text link
    Context. Spacecraft observations have motivated the need for a refined description of the phase-space distribution function. Of particular importance is the pitch-angle diffusion coefficient that occurs in the Fokker-Planck transport equation. Aims. Simulations and analytical test-particle theories are compared to verify the diffusion description of particle transport, which does not allow for non-Markovian behavior. Methods. A Monte-Carlo simulation code was used to trace the trajectories of test particles moving in turbulent magnetic fields. From the ensemble average, the pitch-angle Fokker-Planck coefficient is obtained via the mean square displacement. Results. It is shown that, while excellent agreement with analytical theories can be obtained for slab turbulence, considerable deviations are found for isotropic turbulence. In addition, all Fokker-Planck coefficients tend to zero for high time values.Comment: 8 pages, 10 figures, accepted for publication in Astron. Astrophy

    MHD Simulation of the Inner-Heliospheric Magnetic Field

    Full text link
    Maps of the radial magnetic field at a heliocentric distance of ten solar radii are used as boundary conditions in the MHD code CRONOS to simulate a 3D inner-heliospheric solar wind emanating from the rotating Sun out to 1 AU. The input data for the magnetic field are the result of solar surface flux transport modelling using observational data of sunspot groups coupled with a current sheet source surface model. Amongst several advancements, this allows for higher angular resolution than that of comparable observational data from synoptic magnetograms. The required initial conditions for the other MHD quantities are obtained following an empirical approach using an inverse relation between flux tube expansion and radial solar wind speed. The computations are performed for representative solar minimum and maximum conditions, and the corresponding state of the solar wind up to the Earths orbit is obtained. After a successful comparison of the latter with observational data, they can be used to drive outer-heliospheric models.Comment: for associated wmv movie files accompanying Figure 7, see http://www.tp4.rub.de/~tow/max.wmv and http://www.tp4.rub.de/~tow/min.wm

    Clustering of passive impurities in MHD turbulence

    Full text link
    The transport of heavy, neutral or charged, point-like particles by incompressible, resistive magnetohydrodynamic (MHD) turbulence is investigated by means of high-resolution numerical simulations. The spatial distribution of such impurities is observed to display strong deviations from homogeneity, both at dissipative and inertial range scales. Neutral particles tend to cluster in the vicinity of coherent vortex sheets due to their viscous drag with the flow, leading to the simultaneous presence of very concentrated and almost empty regions. The signature of clustering is different for charged particles. These exhibit in addition to the drag the Lorentz-force. The regions of spatial inhomogeneities change due to attractive and repulsive vortex sheets. While small charges increase clustering, larger charges have a reverse effect.Comment: 9 pages, 13 figure

    Role of dipolar interactions in a system of Ni nanoparticles studied by magnetic susceptibility measurements

    Get PDF
    The role of dipolar interactions among Ni nanoparticles (NP) embedded in an amorphous SiO2/C matrix with different concentrations has been studied performing ac magnetic susceptibility Chi_ac measurements. For very diluted samples, with Ni concentrations < 4 wt % Ni or very weak dipolar interactions, the data are well described by the Neel-Arrhenius law. Increasing Ni concentration to values up to 12.8 wt % Ni results in changes in the Neel-Arrhenius behavior, the dipolar interactions become important, and need to be considered to describe the magnetic response of the NPs system. We have found no evidence of a spin-glasslike behavior in our Ni NP systems even when dipolar interactions are clearly present.Comment: 7 pages, 5 figures, 3 table

    A novel code for numerical 3-D MHD studies of CME expansion

    Get PDF
    A recent third-order, essentially non-oscillatory central scheme to advance the equations of single-fluid magnetohydrodynamics (MHD) in time has been implemented into a new numerical code. This code operates on a 3-D Cartesian, non-staggered grid, and is able to handle shock-like gradients without producing spurious oscillations. &lt;br&gt;&lt;br&gt; To demonstrate the suitability of our code for the simulation of coronal mass ejections (CMEs) and similar heliospheric transients, we present selected results from test cases and perform studies of the solar wind expansion during phases of minimum solar activity. We can demonstrate convergence of the system into a stable Parker-like steady state for both hydrodynamic and MHD winds. The model is subsequently applied to expansion studies of CME-like plasma bubbles, and their evolution is monitored until a stationary state similar to the initial one is achieved. In spite of the model&apos;s (current) simplicity, we can confirm the CME&apos;s nearly self-similar evolution close to the Sun, thus highlighting the importance of detailed modelling especially at small heliospheric radii. &lt;br&gt;&lt;br&gt; Additionally, alternative methods to implement boundary conditions at the coronal base, as well as strategies to ensure a solenoidal magnetic field, are discussed and evaluated

    Anomalous diffusion in disordered multi-channel systems

    Full text link
    We study diffusion of a particle in a system composed of K parallel channels, where the transition rates within the channels are quenched random variables whereas the inter-channel transition rate v is homogeneous. A variant of the strong disorder renormalization group method and Monte Carlo simulations are used. Generally, we observe anomalous diffusion, where the average distance travelled by the particle, []_{av}, has a power-law time-dependence []_{av} ~ t^{\mu_K(v)}, with a diffusion exponent 0 \le \mu_K(v) \le 1. In the presence of left-right symmetry of the distribution of random rates, the recurrent point of the multi-channel system is independent of K, and the diffusion exponent is found to increase with K and decrease with v. In the absence of this symmetry, the recurrent point may be shifted with K and the current can be reversed by varying the lane change rate v.Comment: 16 pages, 7 figure
    corecore