117 research outputs found

    Semi-Automated Reconstruction of Neural Processes from Large Numbers of Fluorescence Images

    Get PDF
    We introduce a method for large scale reconstruction of complex bundles of neural processes from fluorescent image stacks. We imaged yellow fluorescent protein labeled axons that innervated a whole muscle, as well as dendrites in cerebral cortex, in transgenic mice, at the diffraction limit with a confocal microscope. Each image stack was digitally re-sampled along an orientation such that the majority of axons appeared in cross-section. A region growing algorithm was implemented in the open-source Reconstruct software and applied to the semi-automatic tracing of individual axons in three dimensions. The progression of region growing is constrained by user-specified criteria based on pixel values and object sizes, and the user has full control over the segmentation process. A full montage of reconstructed axons was assembled from the ∼200 individually reconstructed stacks. Average reconstruction speed is ∼0.5 mm per hour. We found an error rate in the automatic tracing mode of ∼1 error per 250 um of axonal length. We demonstrated the capacity of the program by reconstructing the connectome of motor axons in a small mouse muscle

    Influence of dental metallic artifact from multislice CT in the assessment of simulated mandibular lesions

    Get PDF
    OBJECTIVE: This study evaluated the influence of metallic dental artifacts on the accuracy of simulated mandibular lesion detection by using multislice technology. MATERIAL AND METHODS: Fifteen macerated mandibles were used. Perforations were done simulating bone lesions and the mandibles were subjected to axial 16 rows multislice CT images using 0.5 mm of slice thickness with 0.3 mm interval of reconstruction. Metallic dental restorations were done and the mandibles were subjected again to CT in the same protocol. The images were analyzed to detect simulated lesions in the mandibles, verifying the loci number and if there was any cortical perforation exposing medullar bone. The analysis was performed by two independent examiners using e-film software. RESULTS: The samples without artifacts presented better results compared to the gold standard (dried mandible with perforations). In the samples without artifacts, all cortical perforation were identified and 46 loci were detected (of 51) in loci number analysis. Among the samples with artifacts, 12 lesions out of 14 were recognized regarding medullar invasion, and 40 out of 51 concerning loci number. The sensitivity in samples without artifacts was 90% and 100% regarding loci number and medullar invasion, respectively. In samples with artifacts, these values dropped to 78% and 86%, respectively. The presence of metallic restorations affected the sensitivity values of the method, but the difference was not significant (p>0.05). CONCLUSIONS: Although there were differences in the results of samples with and without artifacts, the presence of metallic restoration did not lead to misinterpretation of the final diagnosis. However, the validity of multislice CT imaging in this study was established for detection of simulated mandibular bone lesions.CNPqFAPESPCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES

    Aralar Sequesters GABA into Hyperactive Mitochondria, Causing Social Behavior Deficits

    Get PDF
    Social impairment is frequently associated with mitochondrial dysfunction and altered neurotransmission. Although mitochondrial function is crucial for brain homeostasis, it remains unknown whether mitochondrial disruption contributes to social behavioral deficits. Here, we show that Drosophila mutants in the homolog of the human CYFIP1, a gene linked to autism and schizophrenia, exhibit mitochondrial hyperactivity and altered group behavior. We identify the regulation of GABA availability by mitochondrial activity as a biologically relevant mechanism and demonstrate its contribution to social behavior. Specifically, increased mitochondrial activity causes gamma aminobutyric acid (GABA) sequestration in the mitochondria, reducing GABAergic signaling and resulting in social deficits. Pharmacological and genetic manipulation of mitochondrial activity or GABA signaling corrects the observed abnormalities. We identify Aralar as the mitochondrial transporter that sequesters GABA upon increased mitochondrial activity. This study increases our understanding of how mitochondria modulate neuronal homeostasis and social behavior under physiopathological conditions

    A nucleotide binding rectification Brownian ratchet model for translocation of Y-family DNA polymerases

    Get PDF
    Y-family DNA polymerases are characterized by low-fidelity synthesis on undamaged DNA and ability to catalyze translesion synthesis over the damaged DNA. Their translocation along the DNA template is an important event during processive DNA synthesis. In this work we present a Brownian ratchet model for this translocation, where the directed translocation is rectified by the nucleotide binding to the polymerase. Using the model, different features of the available structures for Dpo4, Dbh and polymerase ι in binary and ternary forms can be easily explained. Other dynamic properties of the Y-family polymerases such as the fast translocation event upon dNTP binding for Dpo4 and the considerable variations of the processivity among the polymerases can also be well explained by using the model. In addition, some predicted results of the DNA synthesis rate versus the external force acting on Dpo4 and Dbh polymerases are presented. Moreover, we compare the effect of the external force on the DNA synthesis rate of the Y-family polymerase with that of the replicative DNA polymerase

    FTLD-TDP with motor neuron disease, visuospatial impairment and a progressive supranuclear palsy-like syndrome: broadening the clinical phenotype of TDP-43 proteinopathies. A report of three cases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Frontotemporal lobar degeneration with ubiquitin and TDP-43 positive neuronal inclusions represents a novel entity (FTLD-TDP) that may be associated with motor neuron disease (FTLD-MND); involvement of extrapyramidal and other systems has also been reported.</p> <p>Case presentation</p> <p>We present three cases with similar clinical symptoms, including Parkinsonism, supranuclear gaze palsy, visuospatial impairment and a behavioral variant of frontotemporal dementia, associated with either clinically possible or definite MND. Neuropathological examination revealed hallmarks of FTLD-TDP with major involvement of subcortical and, in particular, mesencephalic structures. These cases differed in onset and progression of clinical manifestations as well as distribution of histopathological changes in the brain and spinal cord. Two cases were sporadic, whereas the third case had a pathological variation in the progranulin gene 102 delC.</p> <p>Conclusions</p> <p>Association of a "progressive supranuclear palsy-like" syndrome with marked visuospatial impairment, motor neuron disease and early behavioral disturbances may represent a clinically distinct phenotype of FTLD-TDP. Our observations further support the concept that TDP-43 proteinopathies represent a spectrum of disorders, where preferential localization of pathogenetic inclusions and neuronal cell loss defines clinical phenotypes ranging from frontotemporal dementia with or without motor neuron disease, to corticobasal syndrome and to a progressive supranuclear palsy-like syndrome.</p

    Thermodynamic Basis for the Emergence of Genomes during Prebiotic Evolution

    Get PDF
    The RNA world hypothesis views modern organisms as descendants of RNA molecules. The earliest RNA molecules must have been random sequences, from which the first genomes that coded for polymerase ribozymes emerged. The quasispecies theory by Eigen predicts the existence of an error threshold limiting genomic stability during such transitions, but does not address the spontaneity of changes. Following a recent theoretical approach, we applied the quasispecies theory combined with kinetic/thermodynamic descriptions of RNA replication to analyze the collective behavior of RNA replicators based on known experimental kinetics data. We find that, with increasing fidelity (relative rate of base-extension for Watson-Crick versus mismatched base pairs), replications without enzymes, with ribozymes, and with protein-based polymerases are above, near, and below a critical point, respectively. The prebiotic evolution therefore must have crossed this critical region. Over large regions of the phase diagram, fitness increases with increasing fidelity, biasing random drifts in sequence space toward ‘crystallization.’ This region encloses the experimental nonenzymatic fidelity value, favoring evolutions toward polymerase sequences with ever higher fidelity, despite error rates above the error catastrophe threshold. Our work shows that experimentally characterized kinetics and thermodynamics of RNA replication allow us to determine the physicochemical conditions required for the spontaneous crystallization of biological information. Our findings also suggest that among many potential oligomers capable of templated replication, RNAs may have evolved to form prebiotic genomes due to the value of their nonenzymatic fidelity

    CD33 Alzheimer’s disease locus: Altered monocyte function and amyloid biology

    Get PDF
    In our functional dissection of the CD33 Alzheimer’s disease susceptibility locus, we find that the rs3865444C risk allele is associated with greater cell surface expression of CD33 in monocytes (t50 = 10.06, pjoint=1.3×10–13) of young and older individuals. It is also associated with (1) diminished internalization of Aβ42) (2) accumulation of neuritic amyloid pathology and fibrillar amyloid on in vivo imaging and (3), increased numbers of activated human microglia

    Overcoming systemic barriers preventing healthy urban development in the UK: Main findings from interviewing senior decision-makers during a 3-year planetary health pilot

    Get PDF
    This paper sets out the main findings from two rounds of interviews with senior representatives from the UK’s urban development industry: the third and final phase of a 3-year pilot, Moving Health Upstream in Urban Development’ (UPSTREAM). The project had two primary aims: firstly, to attempt to value economically the health cost-benefits associated with the quality of urban environments and, secondly, to interview those in control of urban development in the UK in order to reveal the potential barriers to, and opportunities for, the creation of healthy urban environments, including their views on the use of economic valuation of (planetary) health outcomes. Much is known about the ‘downstream’ impact of urban environments on human and planetary health and about how to design and plan healthy towns and cities (‘midstream’), but we understand relatively little about how health can be factored in at key governance tipping points further ‘upstream’, particularly within dominant private sector areas of control (e.g. land, finance, delivery) at sub-national level. Our findings suggest that both public and private sector appeared well aware of the major health challenges posed by poor-quality urban environments. Yet they also recognized that health is not factored adequately into the urban planning process, and there was considerable support for greater use of non-market economic valuation to help improve decision-making. There was no silver bullet however: 110 barriers and 76 opportunities were identified across a highly complex range of systems, actors and processes, including many possible points of targeted intervention for economic valuation. Eight main themes were identified as key areas for discussion and future focus. This findings paper is the second of two on this phase of the project: the first sets out the rationale, approach and methodological lessons learned
    corecore