1,433 research outputs found

    Effect of type of otolith and preparation technique on age estimation of larval and juvenile spot (Leiostomus xanthurus)

    Get PDF
    Otoliths of larval and juvenile fish provide a record of age, size, growth, and development (Campana and Neilson, 1985; Thorrold and Hare, 2002). However, determining the time of first increment formation in otoliths (Campana, 2001) and assessing the accuracy (deviation from real age) and precision (repeatability of increment counts from the same otolith) of increment counts are prerequisites for using otoliths to study the life history of fish (Campana and Moksness, 1991). For most fish species, first increment deposition occurs either at hatching, a day after hatching, or after first feeding and yolksac absorption (Jones, 1986; Thorrold and Hare, 2002). Increment deposition before hatching also occurs (Barkmann and Beck, 1976; Radtke and Dean, 1982). If first increment deposition does not occur at hatching, the standard procedure is to add a predetermined number to increment counts to estimate fish age (Campana and Neilson, 1985)

    The Celestial Reference Frame at 24 and 43 GHz. II. Imaging

    Full text link
    We have measured the sub-milli-arcsecond structure of 274 extragalactic sources at 24 and 43 GHz in order to assess their astrometric suitability for use in a high frequency celestial reference frame (CRF). Ten sessions of observations with the Very Long Baseline Array have been conducted over the course of \sim5 years, with a total of 1339 images produced for the 274 sources. There are several quantities that can be used to characterize the impact of intrinsic source structure on astrometric observations including the source flux density, the flux density variability, the source structure index, the source compactness, and the compactness variability. A detailed analysis of these imaging quantities shows that (1) our selection of compact sources from 8.4 GHz catalogs yielded sources with flux densities, averaged over the sessions in which each source was observed, of about 1 Jy at both 24 and 43 GHz, (2) on average the source flux densities at 24 GHz varied by 20%-25% relative to their mean values, with variations in the session-to-session flux density scale being less than 10%, (3) sources were found to be more compact with less intrinsic structure at higher frequencies, and (4) variations of the core radio emission relative to the total flux density of the source are less than 8% on average at 24 GHz. We conclude that the reduction in the effects due to source structure gained by observing at higher frequencies will result in an improved CRF and a pool of high-quality fiducial reference points for use in spacecraft navigation over the next decade.Comment: 63 pages, 18 figures, 6 tables, accepted by the Astronomical Journa

    The approach to criticality in sandpiles

    Get PDF
    A popular theory of self-organized criticality relates the critical behavior of driven dissipative systems to that of systems with conservation. In particular, this theory predicts that the stationary density of the abelian sandpile model should be equal to the threshold density of the corresponding fixed-energy sandpile. This "density conjecture" has been proved for the underlying graph Z. We show (by simulation or by proof) that the density conjecture is false when the underlying graph is any of Z^2, the complete graph K_n, the Cayley tree, the ladder graph, the bracelet graph, or the flower graph. Driven dissipative sandpiles continue to evolve even after a constant fraction of the sand has been lost at the sink. These results cast doubt on the validity of using fixed-energy sandpiles to explore the critical behavior of the abelian sandpile model at stationarity.Comment: 30 pages, 8 figures, long version of arXiv:0912.320

    The Gaussian Plasma Lens in Astrophysics. Refraction

    Get PDF
    We consider the geometrical optics for refraction of a distant radio source by an interstellar plasma lens, with application to a lens with a Gaussian electron column density profile. The refractive properties of the lens are specified completely by a dimensionless parameter, alpha, which is a function of the wavelength of observation, the lens' electron column density, the lens-observer distance, and the transverse diameter of the lens. Relative motion of the observer and lens produces modulations in the source's light curve. Plasma lenses are diverging so the light curve displays a minimum, when the lens is on-axis, surrounded by enhancements above the unlensed flux density. Lensing can also produce caustics, multiple imaging, and angular position wander of the background source. If caustics are formed, the separation of the outer caustics can constrain alpha, while the separation of the inner caustics can constrain the size of the lens. We apply our analysis to 0954+654, a source for which we can identify caustics in its light curve, and 1741-038, for which polarization observations were obtained during and after the scattering event. We find general agreement between modelled and observed light curves at 2.25 GHz, but poor agreement at 8.1 GHz. The discrepancies may result from a combination of lens substructure or anisotropic shape, a lens that only grazes the source, or unresolved source substructure. Our analysis places the following constraints on the lenses: Toward 0954+654 (1741-038) the lens was 0.38 AU (0.065 AU) in diameter, with a peak column density of 0.24 pc cm^{-3} (1E-4 pc cm^{-3}) and an electron density of 1E5 cm^{-3} (300 cm^{-3}). The angular wander caused by the lens was 250 mas (0.4 mas) at 2.25 GHz. For 1741-038, we place an upper limit of 100 mG on the lens' magnetic field.Comment: 26 pages, LaTeX2e using AASTeX macro aaspp4, 11 PostScript figures; to be published in Ap

    Efeito do sistema plantio direto sobre a produtividade da mandioca (Manihot esculenta Crantz) em Sangão - SC.

    Get PDF
    A mandioca constitui parte fundamental da alimentação de mais de 500 milhões de pessoas no mundo, sendo também matéria-prima para uma série de produtos, sejam eles minimamente processados até quimicamente modificados (TAKAHASHI; CONÇALO, 2001). Para o cultivo da mandioca é recomendável que o solo tenha profundidade de 30 a 40 cm; ausência de camadas impermeáveis e material rochoso e; seja solto, poroso e friável para possibilitar o fácil crescimento das raízes (MONTALDO, 1979; SOUZA & SOUZA, 2000). Para propiciar estas condições, realiza-se o preparo do solo que, de acordo com HOWELER et al (1993), deve proporcionar um bom rompimento do solo para possibilitar melhor drenagem e aeração, reduzir a podridão de raízes e aumentar a produtividade, facilitar a colheita, reduzir os danos as raízes durante a colheita, proporcionando redução da deterioração durante o armazenamento. Entretanto, a associação de sistemas de preparo que resultam em pequena quantidade de palha remanescente sobre o solo com as características fitotécnicas da mandioca, a qual oferece reduzida proteção à superfície do solo no período inicial de desenvolvimento (HOWELER et al, 1993), agrava os problemas com erosão, compactação, oxidação da matéria orgânica, entre outros, resultando no empobrecimento crescente dos solos (SOUZA, SOUZA & GOMES, 2006). Nas regiões em que as áreas apresentam declividades mais acentuadas como é comum se observar no município de Sangão e regiões próximas, as perdas de solo por erosão são preocupantes. Em outras regiões, preocupados com estes aspectos, vários estudos foram realizados avaliando-se a produtividade de mandioca em diferentes sistemas de preparo, onde foi possível constatar que na maioria (OHIRI e EZUMAH, 1990; CADAVID et al, 1998; MATE, 2002; JONGRUAYSUP et al., 2003; FEY et al, 2007 e; OUSUBO et al, 2008) se obtiveram resultados de produtividade da mandioca equivalentes e até superiores em sistema plantio direto, enquanto OLIVEIRA et al (2001) e PEQUENO et al (2007), encontraram resultados equivalentes de produtividade em apenas um ano e, na média de todos os anos, o preparo mínimo e sistema plantio direto foram estatisticamente inferiores, apontado-se como possível causa destes resultados a maior densidade e menor macroporosidade encontrada nesses sistemas. Visando amenizar este problema que pode afetar o desenvolvimento, a produtividade e a colheita da mandioca, FEY (2009) desenvolveu um sulcador alado para a implantação da cultura da mandioca em sistema plantio direto, cujo objetivo é romper uma maior área de solo no sulco de plantio deixando-o solto para facilitar o desenvolvimento das raízes e melhorar a infiltração de água. Nos estudos realizados pelo autor não foram encontradas diferenças de produtividade na cultura da mandioca implantada em sistema de preparo convencional do solo e sistema plantio direto na região oeste do Paraná. Nesse contexto, o trabalho objetivou avaliar a produtividade da mandioca em sistema de preparo convencional e sistema plantio direto

    Angular Broadening of Intraday Variable AGN. II. Interstellar and Intergalactic Scattering

    Full text link
    We analyze a sample of 58 multi-wavelength, Very Long Baseline Array observations of active galactic nuclei (AGN) to determine their scattering properties. Approximately 75% of the sample consists of AGN that exhibit centimeter-wavelength intraday variability (interstellar scintillation) while the other 25% do not show intraday variability. We find that interstellar scattering is measurable for most of these AGN, and the typical broadening diameter is 2 mas at 1 GHz. We find that the scintillating AGN are typically at lower Galactic latitudes than the non-scintillating AGN, consistent with the scenario that intraday variability is a propagation effect from the Galactic interstellar medium. The magnitude of the inferred interstellar broadening measured toward the scintillating AGN, when scaled to higher frequencies, is comparable to the diameters inferred from analyses of the light curves for the more well-known intraday variable sources. However, we find no difference in the amount of scattering measured toward the scintillating versus non-scintillating AGN. A consistent picture is one in which the scintillation results from localized regions ("clumps") distributed throughout the Galactic disk, but which individually make little contribution to the angular broadening. Of the 58 AGN observed, 37 (64%) have measured redshifts. At best, a marginal trend is found for scintillating (non-scintillating) AGN to have smaller (larger) angular diameters at higher redshifts. We also use our observations to try to constrain the possibility of intergalactic scattering. While broadly consistent with the scenario of a highly turbulent intergalactic medium, our observations do not place significant constraints on its properties.Comment: 13 pages, 4 figures; AASTeX format; ApJ in pres

    Symbolic Manipulators Affect Mathematical Mindsets

    Full text link
    Symbolic calculators like Mathematica are becoming more commonplace among upper level physics students. The presence of such a powerful calculator can couple strongly to the type of mathematical reasoning students employ. It does not merely offer a convenient way to perform the computations students would have otherwise wanted to do by hand. This paper presents examples from the work of upper level physics majors where Mathematica plays an active role in focusing and sustaining their thought around calculation. These students still engage in powerful mathematical reasoning while they calculate but struggle because of the narrowed breadth of their thinking. Their reasoning is drawn into local attractors where they look to calculation schemes to resolve questions instead of, for example, mapping the mathematics to the physical system at hand. We model the influence of Mathematica as an integral part of the constant feedback that occurs in how students frame, and hence focus, their work

    VSOP and Ground-based VLBI Imaging of the TeV Blazar Markarian 421 at Multiple Epochs

    Get PDF
    We present thirty VLBI images of the TeV blazar Markarian 421 (1101+384) at fifteen epochs spanning the time range from 1994 to 1997, and at six different frequencies from 2.3 to 43 GHz. The imaged observations include a high-resolution 5 GHz VLBI Space Observatory Programme (VSOP) observation with the HALCA satellite on 1997 November 14; full-track VLBA observations from 1994 April, 1996 November, and 1997 May at frequencies between 5 and 43 GHz; six epochs of VLBA snapshot observations at frequencies between 2 and 15 GHz from Radio Reference Frame studies; and five geodetic VLBI observations at 2 and 8 GHz from the archive of the Washington VLBI Correlator Facility located at the U.S. Naval Observatory. The dense time coverage of the images allows us to unambiguously track components in the parsec-scale jet over the observed time range. We measure the speeds of three inner jet components located between 0.5 and 5 mas from the core (0.3 to 3 pc projected linear distance) to be 0.19 +/- 0.27, 0.30 +/- 0.07, and -0.07 +/- 0.07 c (H_{0}=65 km s^{-1} Mpc^{-1}). If the sole 43 GHz image is excluded, all measured speeds are consistent with no motion. These speeds differ from tentative superluminal speeds measured by Zhang & B\aa\aa th from three epochs of data from the early 1980's. Possible interpretations of these subluminal speeds in terms of the high Doppler factor demanded by the TeV variability of this source are discussed.Comment: 18 pages, including 7 figures, emulateapj.sty, accepted by The Astrophysical Journal; modified text describing Radio Reference Frame observation

    Absolute kinematics of radio source components in the complete S5 polar cap sample. III. First wide-field high-precision astrometry at 15.4 GHz

    Get PDF
    We report on the first wide-field, high-precision astrometric analysis of the 13 extragalactic radio sources of the complete S5 polar cap sample at 15.4 GHz. We describe new algorithms developed to enable the use of differenced phase delays in wide-field astrometric observations and discuss the impact of using differenced phase delays on the precision of the wide-field astrometric analysis. From this global fit, we obtained estimates of the relative source positions with precisions ranging from 14 to 200 μ\muas at 15.4 GHz, depending on the angular separation of the sources (from \sim1.6 to \sim20.8 degrees). These precisions are \sim10 times higher than the achievable precisions using the phase-reference mapping technique.Comment: 9 pages, 7 figure
    corecore