A popular theory of self-organized criticality relates the critical behavior
of driven dissipative systems to that of systems with conservation. In
particular, this theory predicts that the stationary density of the abelian
sandpile model should be equal to the threshold density of the corresponding
fixed-energy sandpile. This "density conjecture" has been proved for the
underlying graph Z. We show (by simulation or by proof) that the density
conjecture is false when the underlying graph is any of Z^2, the complete graph
K_n, the Cayley tree, the ladder graph, the bracelet graph, or the flower
graph. Driven dissipative sandpiles continue to evolve even after a constant
fraction of the sand has been lost at the sink. These results cast doubt on the
validity of using fixed-energy sandpiles to explore the critical behavior of
the abelian sandpile model at stationarity.Comment: 30 pages, 8 figures, long version of arXiv:0912.320