17 research outputs found

    Evolution of the Concepts of Endometrosis, Post Breeding Endometritis, and Susceptibility of Mares

    Get PDF
    Simple Summary Our understanding about inflammation of the endometrium after mating and susceptibility of mares to endometritis has changed in the last 100 years since it was recognized for the first time. Initially, it was believed that bacteria introduced into the uterus during mating could infect the uterus until it was shown that sperm induce neutrophilia. It was realized that post breeding endometritis (PBE) is a physiological defense mechanism used to clean the uterus from excess semen and inflammatory by-products. In mares susceptible to endometritis, PBE can be prolonged beyond the normal duration of 24 h. Delayed uterine clearance due to conformational defects, deficient myometrial contractions, and failure of the cervix to relax is detected by intrauterine fluid accumulation and is an important reason for susceptibility to endometritis. Untreated prolonged PBE can lead to bacterial or fungal endometritis called persistent or chronic endometritis. Multiparous aged mares are more likely to be susceptible. When sperm arrive in the uterus, pro-inflammatory cytokines are released. They attract neutrophils and induce modulatory cytokines which control inflammation. However, persistence of neutrophils and pro-fibrotic cytokines can have deleterious effects in inducing endometrosis. In this paper, the pathogenesis of fibrosis is reviewed. Endometritis and endometrosis are interconnected influencing each other. In this paper, the evolution of our understanding about post breeding endometritis (PBE), the susceptibility of mares, and events leading to endometrosis are reviewed. When sperm arrive in the uterus, pro-inflammatory cytokines and chemokines are released. They attract neutrophils and induce modulatory cytokines which control inflammation. In susceptible mares, this physiological defense can be prolonged since the pattern of cytokine release differs from that of resistant mares being delayed and weaker for anti-inflammatory cytokines. Delayed uterine clearance due to conformational defects, deficient myometrial contractions, and failure of the cervix to relax is detected by intrauterine fluid accumulation and is an important reason for susceptibility to endometritis. Multiparous aged mares are more likely to be susceptible. Untreated prolonged PBE can lead to bacterial or fungal endometritis called persistent or chronic endometritis. Exuberant or prolonged neutrophilia and cytokine release can have deleterious and permanent effects in inducing endometrosis. Interactions of neutrophils, cytokines, and prostaglandins in the formation of collagen and extracellular matrix in the pathogenesis of fibrosis are discussed. Endometritis and endometrosis are interconnected, influencing each other. It is suggested that they represent epigenetic changes induced by age and hostile uterine environment.Peer reviewe

    Two glycerol uptake systems contribute to the high osmotolerance of Zygosaccharomyces rouxii

    Get PDF
    The accumulation of glycerol is essential for yeast viability upon hyperosmotic stress. Here we show that the osmotolerant yeast Zygosaccharomyces rouxii has two genes, ZrSTL1 and ZrSTL2, encoding transporters mediating the active uptake of glycerol in symport with protons, contributing to cell osmotolerance and intracellular pH homeostasis. The growth of mutants lacking one or both transporters is affected depending on the growth medium, carbon source, strain auxotrophies, osmotic conditions and the presence of external glycerol. These transporters are localised in the plasma membrane, they transport glycerol with similar kinetic parameters and besides their expected involvement in the cell survival of hyperosmotic stress, they surprisingly both contribute to an efficient survival of hypoosmotic shock and to the maintenance of intracellular pH homeostasis under non-stressed conditions. Unlike STL1 in Sa. cerevisiae, the two Z. rouxii STL genes are not repressed by glucose, but their expression and activity are downregulated by fructose and upregulated by non-fermentable carbon sources, with ZrSTL1 being more influenced than ZrSTL2. In summary, both transporters are highly important, though Z. rouxii CBS 732(T) cells do not use external glycerol as a source of carbon.The help of Dr. P. Ergang with the real-time PCR experiments is gratefully acknowledged. We thank O. Zimmermannova for critical reading of the paper. This work was supported by the following grants: Grant Agency of the Czech Republic P503/ 10/0307, institutional concept RVO:6798582, Grant Agency of the Charles University 299611/2011/B-Bio/PrF, an Lifelong Learning Programme ERASMUS practical placement grant and by Fundo Europeu de Desenvolvimento Regional – Programa Operacional de Fatores de Competitividade – COMPETE and by national funds from Fundação para a Ciência e Tecnologia through the project PEstC/BIA/UI4050/ 2011.info:eu-repo/semantics/publishedVersio

    Diminishing benefits of urban living for children and adolescents’ growth and development

    Get PDF
    Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was <1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified

    Bioinformatic analysis of endometrial miRNA expression profile at day 26–28 of pregnancy in the mare

    No full text
    Abstract The establishment of the fetomaternal interface depends on precisely regulated communication between the conceptus and the uterine environment. Recent evidence suggests that microRNAs (miRNAs) may play an important role in embryo-maternal dialogue. This study aimed to determine the expression profile of endometrial miRNAs during days 26–28 of equine pregnancy. Additionally, the study aimed to predict target genes for differentially expressed miRNAs (DEmiRs) and their potential role in embryo attachment, adhesion, and implantation. Using next-generation sequencing, we identified 81 DEmiRs between equine endometrium during the pre-attachment period of pregnancy (day 26–28) and endometrium during the mid-luteal phase of the estrous cycle (day 10–12). The identified DEmiRs appear to have a significant role in regulating the expression of genes that influence cell fate and properties, as well as endometrial receptivity formation. These miRNAs include eca-miR-21, eca-miR-126-3p, eca-miR-145, eca-miR-451, eca-miR-491-5p, members of the miR-200 family, and the miRNA-17-92 cluster. The target genes predicted for the identified DEmiRs are associated with ion channel activity and sphingolipid metabolism. Furthermore, it was noted that the expression of mucin 1 and leukemia inhibitory factor, genes potentially regulated by the identified DEmiRs, was up-regulated at day 26–28 of pregnancy. This suggests that miRNAs may play a role in regulating specific genes to create a favorable uterine environment that is necessary for proper attachment, adhesion, and implantation of the embryo in mares

    Intrauterine devices influence prostaglandin secretion by equine uterus: in vitro and in vivo studies

    No full text
    Abstract Background Intrauterine devices (IUD) are used in the veterinary practice as the non-pharmacological method of oestrus suppression in mares. When placed in the uterus, IUD create a physical contact with the endometrium that mimics the presence of an equine embryo. However, the mechanism of their action has not been fully elucidated. The objective of the present study was to examine the effect of mechanical stimulation of IUD on mare`s endometrium in both in vitro and in vivo study. For this purpose, we demonstrated the effect of IUD on prostaglandin (PG) F2α and PGE2 secretion, and mRNA transcription of genes involved in PG synthesis pathway in equine endometrial cells in vitro. In the in vivo study, we aimed to compare short-term effect of IUD inserted on day 0 (oestrus) with day 5–6 post-ovulation (the specific time when embryo reaches uterus after fertilization) on PG secretion from equine endometrium. To determine the long-term effect on PG synthase mRNA transcription, a single endometrial biopsy was taken only once within each group of mares at certain time points of the estrous cycle from mares placement with IUD on days 0 or 5–6 post-ovualtion. Results We showed for the first time that the incubation of the endometrial cells with the presence of IUD altered the pattern of PG synthase mRNA transcription in equine epithelial and stromal endometrial cells. In vivo, in mares placement with IUD on day 0, PGE2 concentrations in blood plasma were upregulated between 1 and 6, and at 10 h after the IUD insertion, compared with the control mares (P < 0.05). Moreover, the decrease of PTGFS mRNA transcription on day 16- 18, associated with an elevation in PTGES mRNA transcription on day 20 -21 of the estrous cycle in endometrial biopsies collected from mares placement with IUD on days 5–6 suggest an antiluteolytic action of IUD during the estrous cycle. Conclusion We conclude that the application of IUD may mimic the equine conceptus presence through the physical contact with the endometrium altering PG synthase transcription, and act as a potent modulator of endometrial PG secretion both in vitro and in vivo

    Intrauterine Infusion of TGF-beta 1 Prior to Insemination, Alike Seminal Plasma, Influences Endometrial Cytokine Responses but Does Not Impact the Timing of the Progression of Pre-Implantation Pig Embryo Development

    No full text
    Simple Summary Although endometrial immune regulation in pigs during the early preimplantation period is poorly documented, particularly under conditions of embryo transfer (ET), it is recognized that seminal plasma (SP) induces molecular changes in the reproductive tract, influencing numerous reproductive functions. A principal constituent of SP is the cytokine transforming growth factor beta 1 (TGF-beta 1), which has an important role in embryo development, pregnancy establishment, and progression. The present study evaluated different intrauterine infusion treatments at estrus (40 mL of SP, porcine TGF-beta 1 in an extender, or an extender alone (control)) by mimicking an ET scenario in so-called "donor" (inseminated) and "recipient" (uninseminated) sows. We investigated the effects of these treatments on day 6 embryo development ("donors") and endometrial explants cytokine production ("donors" and "recipients"). SP infusion positively influenced embryo development compared with TGF-beta 1 or extender infusions. Infusion treatments differentially affected endometrial cytokine production, with the effects being stronger in "donors" than in "recipients." Increased knowledge of the effects of SP or some of its active components on the female immune system may help to develop strategies for increasing the reproductive efficiency for the benefit of pig ET. Seminal plasma (SP) in the female genital tract induces changes that affect multiple reproductive processes. One of the active components in SP is the transforming growth factor beta 1 (TGF-beta 1), which has major roles in embryo development and pregnancy. Embryo transfer (ET) technology is welcomed by the pig industry provided that embryo quality at embryo collection as well as the fertility and prolificacy of the recipients after the ET is increased. This study evaluated different intrauterine infusion treatments at estrus (40 mL of SP, TGF-beta 1 cytokine in the extender, or the extender alone (control)) by mimicking an ET scenario in so-called "donor" (inseminated) and "recipient" (uninseminated) sows. On day 6 (day 0-onset of estrus), all "donors" were laparotomized to determine their pregnancy status (presence and developmental stage of the embryos). In addition, endometrial explants were collected from pregnant "donors" and cyclic "recipients," incubated for 24 h, and analyzed for cytokine production. SP infusions (unlike TGF-beta 1 infusions) positively influenced the developmental stage of day 6 embryos. Infusion treatments differentially influenced the endometrial cytokine production, mainly in donors. We concluded that SP infusions prior to AI not only impacted the porcine preimplantation embryo development but also influenced the endometrial cytokine production six days after treatment, both in donors and recipients.Funding Agencies|Spanish Ministry of Economy and Competitiveness-European Regional Development Fund, Madrid, Spain [MINECO-FEDER: GL2015-69735-R]; Seneca Foundation, Murcia, SpainFundacion Seneca [19892/GERM/15]; Spanish Ministry of Science and Innovation/Spanish State Research Agency/European Regional Development Fund MCI/AEI/FEDER,UE), Madrid, Spain [RTI2018-093525-B-I00]; European UnionEuropean Commission [891663]; Research Council for the Environment, Areal Industries and Community Development (FORMAS), Stockholm, Sweden [2017-00946, 2019-00288]; Ministry of Economy and Competitiveness (Madrid, Spain) [BES-2016-077869]</p

    Blastocyst-Bearing Sows Display a Dominant Anti-Inflammatory Cytokine Profile Compared to Cyclic Sows at Day 6 of the Cycle

    No full text
    Simple Summary A proper uterine environment is basic for obtaining optimal embryo transfer outputs in domestic species, including the pig. However, scarce information is available about the uterine immune response of recipient (uninseminated) sows when receiving embryos during embryo transfer. Endometrial cytokine profile is among the main factors regulating uterine receptivity to embryos. In this study, using Luminex MAP(R) technology, we found important differences in the endometrial production in most of the 16 cytokines analyzed between recipient sows and embryo-bearing (inseminated) sows six days after estrus, with a predominant cytokine anti-inflammatory environment in the embryo-bearing endometria. These observations suggest that insemination components and/or early embryos induce an endometrium immune-tolerant cytokine profile at Day 6 of the cycle. The findings could contribute importantly to design strategies to maximize the reproductive performance of recipients after embryo transfer in swine. In the context of porcine embryo transfer (ET) technology, understanding the tightly regulated local uterine immune environment is crucial to achieve an adequate interaction between the transferred embryos and the receiving endometrium. However, information is limited on the uterine immune status of cyclic-recipient sows when receiving embryos during ET. The present study postulated that the anti- and proinflammatory cytokine profile 6 days after the onset of estrus differs between endometria from uninseminated cyclic sows and blastocyst-bearing sows. On Day 6 of the cycle, endometrial explants were collected from sows inseminated or not inseminated during the postweaning estrus and cultured for 22 h. The culture medium was then analyzed for the contents of a total of 16 cytokines using Luminex MAP(R) technology. The results showed important differences in the endometrial production of most cytokines between the sow categories, with a predominant anti-inflammatory environment displayed by the blastocyst-bearing endometria. These findings suggest that sperm, seminal plasma (SP) and/or early embryos modify the uterine environment by inducing an immune-tolerant cytokine profile already visible at Day 6. Whether the SP or some of its active components may help to develop strategies to maximize the reproductive performance of recipients after ET needs further investigation.Funding Agencies|MINECO-FEDER, Madrid, Spain [AGL2015-69735-R]; Fundacion Seneca, Murcia, SpainFundacion Seneca [19892/GERM/15]; MICIU/FEDER, Madrid, Spain [RTI2018-093525-B-I00]; European Unions Horizon 2020 research and innovation program under the MSCA [891663]; Swedish Research Council FORMAS, Stockholm, Sweden [2017-00946, 2019-00288]; European Union (H2020-MSCA-IF-2019)European Union (EU) [891663]; Ministry of Economy and Competitiveness (Madrid, Spain) [BES-2016-077869]</p

    The potential role of miRNAs and regulation of their expression in the development of mare endometrial fibrosis

    No full text
    Abstract Mare endometrial fibrosis (endometrosis), is one of the main causes of equine infertility. Despite the high prevalence, both ethology, pathogenesis and the nature of its progression remain poorly understood. Recent studies have shown that microRNAs (miRNAs) are important regulators in multiple cellular processes and functions under physiological and pathological circumstances. In this article, we reported changes in miRNA expression at different stages of endometrosis and the effect of transforming growth factor (TGF)-β1 on the expression of the most dysregulated miRNAs. We identified 1, 26, and 5 differentially expressed miRNAs (DEmiRs), in categories IIA (mild fibrosis), IIB (moderate fibrosis), and III (severe fibrosis) groups compared to category I (no fibrosis) endometria group, respectively (Padjusted < 0.05, log2FC ≥ 1.0/log2FC ≤  − 1.0). This study indicated the potential involvement of miRNAs in the regulation of the process associated to the development and progression of endometrosis. The functional enrichment analysis revealed, that DEmiRs target genes involved in the mitogen-activated protein kinases, Hippo, and phosphoinositide-3-kinase (PI3K)-Akt signalling pathways, focal adhesion, and extracellular matrix-receptor interaction. Moreover, we demonstrated that the most potent profibrotic cytokine—TGF-β1—downregulated novel-eca-miR-42 (P < 0.05) expression in fibroblasts derived from endometria at early-stage endometrosis (category IIA)
    corecore