9 research outputs found

    Pva Glue And Cement Soil Mortars As Alternatives For Laying Cement Soil Blocks Masonry [cola à Base De Pva E Argamassa De Solo-cimento Como Alternativas Para O Assentamento De Alvenaria De Tijolos Maciços De Solo-cimento]

    No full text
    This study presents the results of an experimental investigation in characterizing the properties of cement soil block masonry using cement-soil mortars and PVA glue. The study deals with the scantily explored area of tensile bond strength of soil-cement block masonry using cement-soil mortars and PVA glue. Flexural bond strength of masonry has been determined by testing stack-bonded prisms using a bond wrench test set-up. The study clearly demonstrates the superiority of cement-soil mortar over other conventional mortar such as cement mortar. The results of this study can be conveniently used to select a proportion for cement-soil mortar or PVA glue proportion for cement soil block masonry structures.312237248(1984) Tijolo maciço de solo-cimento: especificação, , ABNT. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 8491. Rio de Janeiro(1982) Tijolo maciço de solo-cimento: determinação da resistência à compressão e da absorção de água: método de ensaio, , ABNT. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 8492. Rio de Janeiro(1991) Cimento portland composto, p. 8. , ABNT. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 11578. Rio de Janeiro(1990) Solo-cimento - Ensaio de compactação, p. 2. , ABNT. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 12023. Rio de Janeiro(1990) Solo-cimento - Ensaio de compressão simples de corpos de prova cilíndricos A, p. 2. , BNT. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 12025. Rio de Janeiro(1992) Solo-cimento - Dosagem para emprego como camada de pavimento, p. 4. , ABNT. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 12253. Rio de Janeiro(2005) Argamassa para assentamento e revestimento de paredes e tetos: preparo da mistura e determinação do índice de consistência, p. 3. , ABNT. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 13276. Rio de Janeiro(2005) Argamassa para assentamento e revestimento de paredes e tetos: determinação da retenção de água, p. 3. , ABNT. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 13277. Rio de Janeiro(2005) AArgamassa para assentamento e revestimento de paredes e tetos: determinação da resistência à tração na flexão e à compressão, p. 9. , BNT. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 13279. Rio de Janeiro(2008) Standard test method for flexural strength of hydraulic-cement mortars, p. 6. , ASTM C348-08. West Conshohocken: ATM International(2008), p. 4. , ASTM C349. AMERICAN SOCIETY FOR TESTING AND MATERIAL. Philadelphia, United StatesArman, A., Barclay, R.T., Casias, T.J., Crocker, D.A., Adaska, W.S., de Graffenreid, R.L., Hess, J.R., Wissa Anwar, E.Z., State-of-the-art report on soil cement (1990) ACI Materials Journal, 87 (4), pp. 395-417. , DetroitFerreira, R.C., Gobo, J.C.C., Cunha, A.H.N., Incorporação de casca de arroz e de braquiária e seus efeitos nas propriedades físicas e mecânicas de tijolos de solo-cimento (2008) Engenharia Agrícola, 28 (1), pp. 1-11. , JaboticabalMilani, A.P.S., Freire, W.J., Características físicas e mecânicas de misturas de solo, cimento e casca de arroz (2006) Engenharia Agrícola, 26 (1), pp. 1-10. , Jaboticabal, jan./abrRao, K.V.M., Reddy, B.V.V., Jagadish, K.S., Flexural bond strength of masonry using various blocks and mortars (1996) Materials and Structures, 29 (2), pp. 119-124. , LondonReddy, B.V.V., Ajay, G., Tensile bond strength of soil-cement block masonry couplets using cement-soil mortars (2006) Journal of Materials in Civil Engineering, 18 (1), pp. 36-45. , New YorkReddy, B.V.V., Gupta, A., Strength and elastic properties of stabilized mud block masonry using cement-soil mortars (2006) Journal of Materials in Civil Engineering, 18 (3), pp. 472-475. , New YorkReddy, B.V.V., Vyas, C.H.V.U., Influence of shear bond strength on compressive strength and stress-strain characteristics of masonry (2008) Materials and Structures, 41 (10), pp. 1.697-1.712. , LondonSarangapani, G., Reddy, B.V.V., Jagadish, K.S., Structural characteristics of bricks, mortars and masonry (2002) Journal of Structural Engineering, 29 (2), pp. 101-107. , MadrasSinha, B.P., Factors Affecting the Brick/Mortar Interface Bond Strength (1983) International Journal of Masonry Construction, 3, p. 1Souza, I.B.M., Segantini, A.A.S., Pereira, A.J., Tijolos prensados de solo-cimento confeccionados com resíduos de concreto (2008) Revista Brasileira de Engenharia Agrícola e Ambiental, 12 (2), pp. 205-212. , Campina GrandeTaveira, E.S.N., (1987) O solo-cimento no campo e na cidade: construir, morar, habitar, p. 183. , 2.ed. São Paulo: Ícone Editora, (Coleção Brasil Agrícola)Thomaz, E., (1989) Trincas em edifícios: causas, prevenção e recuperação, , São Paulo: Pini, EPUSP, IP

    Nonconventional concrete hollow blocks evaluation by destructive and non-destructive testing

    Get PDF
    The aim of this study was to evaluate cementitious matrices properties by partial replacement of Portland cement by silica fume (SF) or by rice husk ash (RHA), and their application in nonbearing hollow blocks, tested by destructive and non-destructive methods. The following mixtures were produced: reference (100% of Portland cement) and Portland cement replacement (10% by mass) with SF or RHA. The non-destructive testing showed that the highest values of UPV were obtained for SF-based blocks and RHA-based blocks. The destructive test showed better results for SF-based blocks, but there was no statistical difference between the RHA-based and control ones

    Resistant Capacity And Failure Modes Of Reinforced Concrete Beams Strengthened In Flexure With Externally Bonded Carbon Fiber Reinforced Plastic [capacidade Resistente E Modos De Ruptura De Vigas De Concreto Armado Reforçadas à Flexão Com Fibras De Carbono]

    No full text
    To design an externally bonded fiber reinforced plastic reinforcement for a reinforced concrete beam, it is necessary that the engineer responsible chooses to work without the use of mechanisms to increase the anchoring within safe levels, or make use of artifacts to ensure that the deformation in the fiber reaches ultimate state value supplied by the manufacturer. This article shows the basis for the calculation of the two methodologies under the existing criteria more expressively and also makes comparisons with laboratory tests. For enhancement without anchoring, it was found that to prevent unwanted premature and abrupt ruptures, the methods proposed by ACI and FIB showed to be adequate. To ensure the ultimate deformation of the fiber, a mechanism for anchoring in the form of a bow 45° made by the material of the fiber was studied. In this case, the process of balanced sections to foresee the mode of collapse were verified and then the appropriate comparisons were made between the expected values with the tests results found in the laboratory.653297303(1996) State-of-the-art report on fiber reinforcing plastic reinforcement for concrete structures-ACI 440R-96, p. 68. , AMERICAN CONCRETE INSTITUTE. Reported by ACI Committee 440. Detroit, MichiganArduini, M., Tommaso, A.D., Nanni, A., Brittle failure in FRP plate and sheet bonded beams (1997) ACI Structural Journal, 94 (4), pp. 363-370Ashour, A.F., Family, M., Tests of concrete flanged beams reinforced with CFRP bars (2006) Magazine of Concrete Research, 58 (9), pp. 627-639Barros, J.A.O., Dias, S.J.E., Near surface mounted CFRP laminates for shear strengthening of concrete beams (2006) Cement & Concrete Composites, (28), pp. 276-292Chaallal, O., Nollet, M.J., Perraton, D., Strengthening of reinforced concrete beams with externally bonded fiber-reinforced-plastic plates: Design guidelines for shear and flexure (1998) Canadian Journal of Civil Engineering, 2 (25), pp. 692-704. , Montreal(2001) Externally bonded FRP reinforcement for RC structures-Technical Report-FIB Bulletin, (14), p. 130. , FÉDERATION INTERNATIONALE DU BÉTON. LausanneNg, S.C., Lee, S., A study of flexural behavior of reinforced concrete beam strengthened with carbon fiber-reinforced plastic (CFRP) (2002) Journal of Reinforced Plastics and Composites, 21, pp. 919-938Norris, T., Saadatmanesh, H., Ehsani, M.R., Shear and flexural strengthening of R/C beams with carbon fiber sheets (1997) ASCE Journal of Structural Engineering, 123 (7), pp. 903-911Papanicolaou, C.G., Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls: Out-of-plane cyclic loading (2008) Materials and Structures, 41, pp. 143-157Roberts, T.M., Approximate Analysis of Shear and Normal Stress Concentrations in the Adhesive Layer of Plated RC Beams (1989) The Structural Engineer, 67 (12), pp. 229-233Saadatmanesh, H., Ehsani, M.R., RC beams strengthened with GFRP plates. I: Experimental study (1991) ASCE Journal of Structural Engineering, 117 (11), pp. 3417-3432Si-Larbi, A., Ferrier, E., Hamelin, P., Flexural behaviour of MRBC beams (multi-reinforcing bars concrete beams), promoting the use of FRHPC (2006) Composite Structures, 74, pp. 163-174Silva, A.O.B., (2001) Reforço à flexão de vigas de concreto de elevada resistência por meio da colagem de manta polimérica reforçada com fibras de carbono, p. 405. , São Paulo: Faculdade de Engenharia Civil, Universidade Estadual de Campina

    Nonconventional concrete hollow blocks evaluation by destructive and non-destructive testing

    No full text
    The aim of this study was to evaluate cementitious matrices properties by partial replacement of Portland cement by silica fume (SF) or by rice husk ash (RHA), and their application in nonbearing hollow blocks, tested by destructive and non-destructive methods. The following mixtures were produced: reference (100% of Portland cement) and Portland cement replacement (10% by mass) with SF or RHA. The non-destructive testing showed that the highest values of UPV were obtained for SF-based blocks and RHA-based blocks. The destructive test showed better results for SF-based blocks, but there was no statistical difference between the RHA-based and control ones

    Diversity trapped in cages: Revision of Blumenavia Möller (Clathraceae, Basidiomycota) reveals three hidden species

    No full text
    Basidiomata of Phallales have a diversified morphology with adhesive gleba that exudes an odor, usually unpleasant that attracts mainly insects, which disperse the basidiospores. The genus Blumenavia belongs to the family Clathraceae and, based on morphological features, only two species are currently recognized: B. rhacodes and B. angolensis. However, the morphological characters adopted in species delimitations within this genus are inconsistent, and molecular data are scarce. The present study aimed to review and identify informative characters that contribute to the delimitation of Blumenavia species. Exsiccates from America and Africa were analyzed morphologically, and molecularly, using ITS, LSU, ATP6, RPB2 and TEF-1α markers for Maximum Parsimony, Bayesian and Maximum likelihood analyses, and also for coalescent based species delimitations (BP&P), as well as for bPTP, PhyloMap, Topo-phylogenetic and Geophylogenetic reconstructions. According to our studies, seven species can be considered in the genus: B. rhacodes and B. angolensis are maintained, B. usambarensis and B. toribiotalpaensis are reassessed, and three new species are proposed, B. baturitensis Melanda, M.P. Martín & Baseia, sp. nov., B. crucis-hellenicae G. Coelho, Sulzbacher, Grebenc & Cortez, sp. nov., and B. heroica Melanda, Baseia & M.P. Martín, sp. nov. Blumenavia rhacodes is typified by selecting a lectotype and an epitype. Macromorphological characters considered informative to segregate and delimit the species through integrative taxonomy include length of the basidiomata, color, width and presence of grooves on each arm as well as the glebifer position and shape. These must be clearly observed while the basidiomata are still fresh. Since most materials are usually analyzed after dehydration and deposit in collections, field techniques and protocols to describe fugacious characters from fresh specimen are demanded, as well as the use of molecular analysis, in order to better assess recognition and delimitation of species in Blumenavia

    Fungal Planet description sheets: 785– 867

    No full text
    Novel species of fungi described in this study include those from various countries as follows: Angola, Gnomoniopsis angolensis and Pseudopithomyces angolensis on unknown host plants. Australia, Dothiora corymbiae on Corymbia citriodora, Neoeucasphaeria eucalypti (incl. Neoeucasphaeria gen. nov.) on Eucalyptus sp., Fumagopsis stellae on Eucalyptus sp., Fusculina eucalyptorum (incl. Fusculinaceae fam. nov.) on Eucalyptus socialis, Harknessia corymbiicola on Corymbia maculata, Neocelosporium eucalypti (incl. Neocelosporium gen. nov., Neocelosporiaceae fam. nov. and Neocelosporiales ord. nov.) on Eucalyptus cyanophylla, Neophaeomoniella corymbiae on Corymbia citriodora, Neophaeomoniella eucalyptigena on Eucalyptus pilularis, Pseudoplagiostoma corymbiicola on Corymbia citriodora, Teratosphaeria gracilis on Eucalyptus gracilis, Zasmidium corymbiae on Corymbia citriodora. Brazil, Calonectria hemileiae on pustules of Hemileia vastatrix formed on leaves of Coffea arabica, Calvatia caatinguensis on soil, Cercospora solani-betacei on Solanum betaceum, Clathrus natalensis on soil, Diaporthe poincianellae on Poincianella pyramidalis, Geastrum piquiriunense on soil, Geosmithia carolliae on wing of Carollia perspicillata, Henningsia resupinata on wood, Penicillium guaibinense from soil, Periconia caespitosa from leaf litter, Pseudocercospora styracina on Styrax sp., Simplicillium filiforme as endophyte from Citrullus lanatus, Thozetella pindobacuensis on leaf litter, Xenosonderhenia coussapoae on Coussapoa floccosa. Canary Islands (Spain), Orbilia amarilla on Euphorbia canariensis. Cape Verde Islands, Xylodon jacobaeus on Eucalyptus camaldulensis. Chile, Colletotrichum arboricola on Fuchsia magellanica. Costa Rica, Lasiosphaeria miniovina on tree branch. Ecuador, Ganoderma chocoense on tree trunk. France, Neofitzroyomyces nerii (incl. Neofitzroyomyces gen. nov.) on Nerium oleander. Ghana, Castanediella tereticornis on Eucalyptus tereticornis, Falcocladium africanum on Eucalyptus brassiana, Rachicladosporium corymbiae on Corymbia citriodora. Hungary, Entoloma silvae-frondosae in Carpinus betulus-Pinus sylvestris mixed forest. Iran, Pseudopyricularia persiana on Cyperus sp. Italy, Inocybe roseascens on soil in mixed forest. Laos, Ophiocordyceps houaynhangensis on Coleoptera larva. Malaysia, Monilochaetes melastomae on Melastoma sp. Mexico, Absidia terrestris from soil. Netherlands, Acaulium pannemaniae, Conioscypha boutwelliae, Fusicolla septimanifiniscientiae, Gibellulopsis simonii, Lasionectria hilhorstii, Lectera nordwiniana, Leptodiscella rintelii, Parasarocladium debruynii and Sarocladium dejongiae (incl. Sarocladiaceae fam. nov.) from soil. New Zealand, Gnomoniopsis rosae on Rosa sp. and Neodevriesia metrosideri on Metrosideros sp. Puerto Rico, Neodevriesia coccolobae on Coccoloba uvifera, Neodevriesia tabebuiae and Alfaria tabebuiae on Tabebuia chrysantha. Russia, Amanita paludosa on bogged soil in mixed deciduous forest, Entoloma tiliae in forest of Tilia × europaea, Kwoniella endophytica on Pyrus communis. South Africa, Coniella diospyri on Diospyros mespiliformis, Neomelanconiella combreti (incl. Neomelanconiellaceae fam. nov. and Neomelanconiella gen. nov.) on Combretum sp., Polyphialoseptoria natalensis on unidentified plant host, Pseudorobillarda bolusanthi on Bolusanthus speciosus, Thelonectria pelargonii on Pelargonium sp. Spain, Vermiculariopsiella lauracearum and Anungitopsis lauri on Laurus novocanariensis, Geosmithia xerotolerans from a darkened wall of a house, Pseudopenidiella gallaica on leaf litter. Thailand, Corynespora thailandica on wood, Lareunionomyces loeiensis on leaf litter, Neocochlearomyces chromolaenae (incl. Neocochlearomyces gen. nov.) on Chromolaena odorata, Neomyrmecridium septatum (incl. Neomyrmecridium gen. nov.), Pararamichloridium caricicola on Carex sp., Xenodactylaria thailandica (incl. Xenodactylariaceae fam. nov. and Xenodactylaria gen. nov.), Neomyrmecridium asiaticum and Cymostachys thailandica from unidentified vine. USA, Carolinigaster bonitoi (incl. Carolinigaster gen. nov.) from soil, Penicillium fortuitum from house dust, Phaeotheca shathenatiana (incl. Phaeothecaceae fam. nov.) from twig and cone litter, Pythium wohlseniorum from stream water, Superstratomyces tardicrescens from human eye, Talaromyces iowaense from office air. Vietnam, Fistulinella olivaceoalba on soil. Morphological and culture characteristics along with DNA barcodes are provided
    corecore