1,936 research outputs found

    Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells

    Get PDF
    Control of self-renewal and differentiation of human ES cells (hESCs) remains a challenge. This is largely due to the use of culture systems that involve poorly defined animal products and do not mimic the normal developmental milieu. Routine protocols involve the propagation of hESCs on mouse fibroblast or human feeder layers, enzymatic cell removal, and spontaneous differentiation in cultures of embryoid bodies, and each of these steps involves significant variability of culture conditions. We report that a completely synthetic hydrogel matrix can support (i) long-term self-renewal of hESCs in the presence of conditioned medium from mouse embryonic fibroblast feeder layers, and (ii) direct cell differentiation. Hyaluronic acid (HA) hydrogels were selected because of the role of HA in early development and feeder layer cultures of hESCs and the controllability of hydrogel architecture, mechanics, and degradation. When encapsulated in 3D HA hydrogels (but not within other hydrogels or in monolayer cultures on HA), hESCs maintained their undifferentiated state, preserved their normal karyotype, and maintained their full differentiation capacity as indicated by embryoid body formation. Differentiation could be induced within the same hydrogel by simply altering soluble factors. We therefore propose that HA hydrogels, with their developmentally relevant composition and tunable physical properties, provide a unique microenvironment for the selfrenewal and differentiation of hESCs

    Prevalence of toxoplasmic retinochoroiditis in an Australian adult population: A community-based study

    Get PDF
    Purpose: Toxoplasmic retinochoroiditis is the most common clinical manifestation of an infection with the protozoan parasite, Toxoplasma gondii. Up to 50 % of the human population is estimated to be infected with T. gondii; however, the epidemiology of toxoplasmic retinochoroiditis has not been widely reported. We sought to estimate the prevalence of toxoplasmic retinochoroiditis in Australia using data that were collected as part of the Busselton Healthy Ageing Study. Design: oss-sectional, community-based, prospective cohort study. Participants: 5020 Australian adults (2264 men and 2756 women; age range, 45–69 years, and median age, 58 years). Methods : Retinal color photographs, centered on the optic disc and macula, were captured using a digital retinal camera after the dilation of the pupils. Three uveitis-subspecialized ophthalmologists assessed each pigmented retinal lesion, and complete concordance of opinion was required to assign a toxoplasmic etiology. Serum T. gondii immunoglobulin (Ig)G levels were measured for those participants with retinal lesions judged to be toxoplasmic retinochoroiditis. Main Outcome Measures : Prevalence of toxoplasmic retinochoroiditis. Results: Eight participants (0.16 %) had retinal lesions that were considered to have the characteristic appearance of toxoplasmic retinochoroiditis, plus detectable serum T. gondii IgG, consistent with the diagnosis of toxoplasmic retinochoroiditis. On the assumption that 23.81 % of retinal lesions occur at the posterior pole, as reported in a community-based survey conducted in Brazil (Sci Rep. 2021;11:3420), the prevalence of toxoplasmic retinochoroiditis was estimated to be 0.67 % or 1 per 149 persons. Conclusions: Toxoplasmic retinochoroiditis is common in Australian adults. Efforts to quantify and address risk factors for human infection with T. gondii are justified

    A Cautionary Tale: MARVELS Brown Dwarf Candidate Reveals Itself To Be A Very Long Period, Highly Eccentric Spectroscopic Stellar Binary

    Get PDF
    We report the discovery of a highly eccentric, double-lined spectroscopic binary star system (TYC 3010-1494-1), comprising two solar-type stars that we had initially identified as a single star with a brown dwarf companion. At the moderate resolving power of the MARVELS spectrograph and the spectrographs used for subsequent radial-velocity (RV) measurements (R ~ <30,000), this particular stellar binary mimics a single-lined binary with an RV signal that would be induced by a brown dwarf companion (Msin(i)~50 M_Jup) to a solar-type primary. At least three properties of this system allow it to masquerade as a single star with a very low-mass companion: its large eccentricity (e~0.8), its relatively long period (P~238 days), and the approximately perpendicular orientation of the semi-major axis with respect to the line of sight (omega~189 degrees). As a result of these properties, for ~95% of the orbit the two sets of stellar spectral lines are completely blended, and the RV measurements based on centroiding on the apparently single-lined spectrum is very well fit by an orbit solution indicative of a brown dwarf companion on a more circular orbit (e~0.3). Only during the ~5% of the orbit near periastron passage does the true, double-lined nature and large RV amplitude of ~15 km/s reveal itself. The discovery of this binary system is an important lesson for RV surveys searching for substellar companions; at a given resolution and observing cadence, a survey will be susceptible to these kinds of astrophysical false positives for a range of orbital parameters. Finally, for surveys like MARVELS that lack the resolution for a useful line bisector analysis, it is imperative to monitor the peak of the cross-correlation function for suspicious changes in width or shape, so that such false positives can be flagged during the candidate vetting process.Comment: 16 pages, 11 figures, 6 table

    Very Low Mass Stellar and Substellar Companions to Solar-Like Stars From MARVELS V: A Low Eccentricity Brown Dwarf from the Driest Part of the Desert, MARVELS-6b

    Get PDF
    We describe the discovery of a likely brown dwarf (BD) companion with a minimum mass of 31.7 +/- 2.0 M_Jup to GSC 03546-01452 from the MARVELS radial velocity survey, which we designate as MARVELS-6b. For reasonable priors, our analysis gives a probability of 72% that MARVELS-6b has a mass below the hydrogen-burning limit of 0.072 M_Sun, and thus it is a high-confidence BD companion. It has a moderately long orbital period of 47.8929 +0.0063/-0.0062 days with a low eccentricty of 0.1442 +0.0078/-0.0073, and a semi-amplitude of 1644 +12/-13 m/s. Moderate resolution spectroscopy of the host star has determined the following parameters: T_eff = 5598 +/- 63, log g = 4.44 +/- 0.17, and [Fe/H] = +0.40 +/- 0.09. Based upon these measurements, GSC 03546-01452 has a probable mass and radius of M_star = 1.11 +/- 0.11 M_Sun and R_star = 1.06 +/- 0.23 R_Sun with an age consistent with less than ~6 Gyr at a distance of 219 +/- 21 pc from the Sun. Although MARVELS-6b is not observed to transit, we cannot definitively rule out a transiting configuration based on our observations. There is a visual companion detected with Lucky Imaging at 7.7 arcsec from the host star, but our analysis shows that it is not bound to this system. The minimum mass of MARVELS-6b exists at the minimum of the mass functions for both stars and planets, making this a rare object even compared to other BDs.Comment: 15 pages, 15 figures, 5 tables. Accepted for publication in The Astronomical Journa

    Climatic and local stressor interactions threaten tropical forests and coral reefs

    Get PDF
    Tropical forests and coral reefs host a disproportionately large share of global biodiversity and provide ecosystem functions and services used by millions of people. Yet, ongoing climate change is leading to an increase in frequency and magnitude of extreme climatic events in the tropics, which, in combination with other local human disturbances, is leading to unprecedented negative ecological consequences for tropical forests and coral reefs. Here, we provide an overview of how and where climate extremes are affecting the most biodiverse ecosystems on Earth and summarize how interactions between global, regional and local stressors are affecting tropical forest and coral reef systems through impacts on biodiversity and ecosystem resilience. We also discuss some key challenges and opportunities to promote mitigation and adaptation to a changing climate at local and global scales. This article is part of the theme issue ‘Climate change and ecosystems: threats, opportunities and solutions'

    Dissection of a Complex Disease Susceptibility Region Using a Bayesian Stochastic Search Approach to Fine Mapping.

    Get PDF
    Identification of candidate causal variants in regions associated with risk of common diseases is complicated by linkage disequilibrium (LD) and multiple association signals. Nonetheless, accurate maps of these variants are needed, both to fully exploit detailed cell specific chromatin annotation data to highlight disease causal mechanisms and cells, and for design of the functional studies that will ultimately be required to confirm causal mechanisms. We adapted a Bayesian evolutionary stochastic search algorithm to the fine mapping problem, and demonstrated its improved performance over conventional stepwise and regularised regression through simulation studies. We then applied it to fine map the established multiple sclerosis (MS) and type 1 diabetes (T1D) associations in the IL-2RA (CD25) gene region. For T1D, both stepwise and stochastic search approaches identified four T1D association signals, with the major effect tagged by the single nucleotide polymorphism, rs12722496. In contrast, for MS, the stochastic search found two distinct competing models: a single candidate causal variant, tagged by rs2104286 and reported previously using stepwise analysis; and a more complex model with two association signals, one of which was tagged by the major T1D associated rs12722496 and the other by rs56382813. There is low to moderate LD between rs2104286 and both rs12722496 and rs56382813 (r2 ≃ 0:3) and our two SNP model could not be recovered through a forward stepwise search after conditioning on rs2104286. Both signals in the two variant model for MS affect CD25 expression on distinct subpopulations of CD4+ T cells, which are key cells in the autoimmune process. The results support a shared causal variant for T1D and MS. Our study illustrates the benefit of using a purposely designed model search strategy for fine mapping and the advantage of combining disease and protein expression data.We acknowledge use of DNA from The UK Blood Services collection of Common Controls (UKBS-CC collection), which is funded by the Wellcome Trust grant 076113/C/04/Z and by the USA National Institute for Health Research program grant to the National Health Service Blood and Transplant (RP-PG-0310-1002). We acknowledge the use of DNA from the British 1958 Birth Cohort collection, which is funded by the UK Medical Research Council grant G0000934 and the Wellcome Trust grant 068545/Z/02. This research utilized resources provided by the Type 1 Diabetes Genetics Consortium, a collaborative clinical study sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases, the National Institute of Allergy and Infectious Diseases, the National Human Genome Research Institute, the National Institute of Child Health and Human Development and the JDRF and is supported by the USA National Institutes of Health grant U01-DK062418. The JDRF/Wellcome Trust Diabetes and Inflammation Laboratory is funded by the JDRF (9-2011-253), the Wellcome Trust (091157) and the National Institute for Health Research Cambridge Biomedical Centre. The research leading to these results has received funding from the European Union's 7th Framework Programme (FP7/2007-2013) under grant agreement no.241447 (NAIMIT). The Cambridge Institute for Medical Research (CIMR) is in receipt of a Wellcome Trust Strategic Award (100140). CW is supported by the Wellcome Trust (089989). We acknowledge the National Institute for Health Research Cambridge Biomedical Research Centre for funding.This is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.pgen.100527
    • …
    corecore