1,184 research outputs found

    Intrinsic foot muscles act to stabilise the foot when greater fluctuations in centre of pressure movement result from increased postural balance challenge

    Get PDF
    © 2020 The Author(s) Background: Increased postural balance challenge is associated with more fluctuations in centre of pressure movement, indicating increased interference from the postural control system. The role of intrinsic foot muscles in balance control is relatively understudied and whether such control system interference occurs at the level of these muscles is unknown. Research Question: Do fewer fluctuations in intrinsic foot muscle excitation occur in response to increased postural balance challenge? Methods: Surface EMGs were recorded using a grid of 13 × 5 channels from the plantar surface of the foot of 17 participants, who completed three balance tasks: bipedal stance; single leg stance and bipedal tip-toe. Centre of pressure (CoP) movement was calculated from simultaneously recorded force plate signals. Fluctuations in CoP and EMGs for each task were quantified using a sample entropy based metric, Entropy Halflife (EnHL). Longer EnHL indicates fewer signal fluctuations. Results: The shortest EMG EnHL, 9.27 ± 3.34 ms (median ± interquartile range), occurred during bipedal stance and the longest during bipedal tip-toe 15.46 ± 11.16 ms, with 18.80 ± 8.00 ms recorded for single leg stance. Differences were statistically significant between bipedal stance and both bipedal tip-toe (p < 0.001) and single leg stance (p < 0.001). CoP EnHL for both anterior-posterior and medial-lateral movements also differed significantly between tasks (p < 0.001, both cases). However, anterior-posterior CoP EnHL was longest for bipedal stance 259.84±230.22 ms and shortest for bipedal tip-toe 146.25±73.35 ms. Medial-lateral CoP EnHL was also longest during bipedal stance 215.73±187.58 ms, but shortest for single leg stance 113.48±83.01 ms. Significance: Fewer fluctuations in intrinsic foot muscle excitation occur in response to increased postural balance challenge. Fluctuations in CoP movement during balance must be predominantly driven by excitation of muscles extrinsic to the foot. Intrinsic foot muscles therefore likely play a greater role in stabilisation of the foot than balance control during the postural tasks studied

    In vitro analysis of the fracture resistance of CAD-CAM monolithic zirconia molar crowns with different occlusal thickness

    Get PDF
    Objectives: To compare the fracture resistance and mode of failure of CAD-CAM monolithic zirconia crowns with different occlusal thickness. Material and methods: Forty CAD-CAM monolithic zirconia crowns with different occlusal thickness were randomly distributed into 4 experimental groups: 2.0 mm (group 1), 1.5 mm (group 2), 1.0 mm (group 3) and 0.5 mm (group 4). The restorations were cemented onto human molars with a self-adhesive resin cement. The specimens were loaded until fracture; the fracture resistance and mode of failure were recorded. The data were statistically analyzed with the one-way ANOVA followed by the Fisher's Exact test with Bonferroni's correction (p=0.05). Results: The fracture resistance values of all the specimens exceeded the maximum physiological occlusal loads in molar regions. All the crowns showed cohesive microcracks of the zirconia core; only 1 crown with a thickness of 0.5 mm was interested by a complete fracture. Conclusions: The occlusal thickness of CAD-CAM monolithic zirconia crowns did not influence either the fracture resistance and the mode of failure of the restorations; the occlusal thickness of CAD-CAM monolithic zirconia crowns can be reduced up to a lower bound of 0.5 mm keeping a sufficient strength to withstand occlusal loads; CAD-CAM monolithic zirconia crowns showed sufficient fracture resistance to be used in molar regions, even in a thin configuration (0.5 mm)

    Coercivity extrema in melt-spun CuCo ribbons: Effects of the magnetic moment distribution

    Get PDF
    Measurements of magnetization loops on melt-spun CuCo ribbons revealed a minimum in the temperature dependence of the coercivity. A coherent interpretation was given through Monte Carlo simulations of a dispersed system of noninteracting, uniaxial magnetic granules embedded in a nonmagnetic matrix. The coercivity is implicitly defined by the balance between the negative magnetization of superparamagnetic granules and the remaining magnetization of blocked granules after saturation in the positive field direction. When the temperature rises in a system made of a large amount of small granules and a small amount of big granules, unblocking predominates over thermal fluctuations and the coercivity decreases until a certain temperature at which most of the small granules are superparamagnetic; above this temperature, thermal fluctuations predominate, and the coercivity increases almost linearly with the temperature until the final unblocking of the big granules. (C) 1999 American Institute of Physics. [S0021-8979(99)04618-6].8663010301

    Controlling magnetic and transport properties of granular alloys through Joule heating

    Get PDF
    Melt-spun Cu-Co ribbons are annealed by linearly varying current Joule heating. During the annealing, the electrical resistance is measured in order to follow the structural transformations within the samples. The resistance versus current curves show a characteristic behavior for all samples studied. This fact is used to specify optimum conditions to obtain the best nanostructure which displays the maximum giant magnetoresistance ratio. (C) 1998 American Institute of Physics. [S0021-8979(98)04521-6].8495366536

    Surface electromyography can quantify temporal and spatial patterns of activation of intrinsic human foot muscles

    Get PDF
    Intrinsic foot muscles (IFM) are a crucial component within the human foot. Investigating their functioning can help understand healthy and pathological behaviour of foot and ankle, fundamental for everyday activities. Recording muscle activation from IFM has been attempted with invasive techniques, mainly investigating single muscles. Here we present a novel methodology, to investigate the feasibility of recording physiological surface EMG (sEMG) non-invasively and quantify patterns of activation across the whole plantar region of the foot. sEMG were recorded with a 13 × 5 array from the sole of the foot (n = 25) during two-foot stance, two-foot tiptoe and anterior/posterior sways. Physiological features of sEMG were analysed. During anterior/posterior epochs within the sway task, sEMG patterns were analysed in terms of signal amplitude (intensity) and structure (Sample Entropy) distribution, by evaluating the centre of gravity (CoG) of each topographical map. Results suggest signals are physiological and not affected by loading. Both amplitude and sample entropy CoG coordinates were grouped in one region and overlapped, suggesting that the region with highest amplitude corresponds with the most predictable signal. Therefore, both spatial and temporal features of IFM activation may be recorded non-invasively, providing opportunity for more detailed investigation of IFM function in healthy and patient populations

    Controlling Fe nanocrystallization in amorphous Fe86Zr7Cu1B6 by linear varying current Joule heating

    Get PDF
    Amorphous melt-spun Fe86Zr7Cu1B6 ribbons were annealed using the linear varying current Joule heating method. Experimental curves of resistance (R) and temperature (T) versus applied current (I) allow one to follow precisely the crystallization of alpha-Fe nanoparticles during annealing. This result proves that the applied current can be considered a reliable parameter to control the crystalline fraction in this alloy. A comparison between structural and magnetic measurements shows that the R(I) curve can be used as a guide to identify a condition for optimum soft magnetic properties of this alloy. (C) 2000 American Institute of Physics. [S0003-6951(00)02035-0].7791375137

    ACUTE HEPATOTOXICITY OF Crotalus durissus terrificus (SOUTH AMERICAN RATTLESNAKE) VENOM IN RATS

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Venom of the South American rattlesnake, Crotalus durissus terrificus (Cdt), presents myotoxic and neurotoxic outcomes, but reports on its effects on the liver are scarce. This study examined the hepatotoxicity resulting from Cdt venom administration (100, 200 and 300 mu g/kg) in male Wistar rats. Animals were studies at 3, 6, 9 and 12 hours after venom injection. The hepatotoxicity was assessed through serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AP), gamma glutamyl transferase (GGT), bilirrubin and also by histopathological evaluation. All the different concentrations of Cdt venom resulted in increased levels of hepatic enzymes, when compared with the control group, except for the 100 mu g/kg dose, which presented normal levels at 9 and 12 hours after venom administration. Bilirrubin levels remained unchanged by Cdt venom. Histological analysis revealed endothelial damage, inflammatory cell infiltration, as well as sinusoidal and portal congestion. Based on these observations, we may conclude that Cdt venom causes dose- and time-dependent hepatic damage in rats, characterized by elevated hepatic enzyme levels and histological alterations.1516178Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FVE/UNIVAPFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Acute hepatotoxicity of Crotalus durissus terrificus (South American rattlesnake) venom in rats

    Full text link
    Venom of the South American rattlesnake, Crotalus durissus terrificus (Cdt), presents myotoxic and neurotoxic outcomes, but reports on its effects on the liver are scarce. This study examined the hepatotoxicity resulting from Cdt venom administration (100, 200 and 300 µg/kg) in male Wistar rats. Animals were studies at 3, 6, 9 and 12 hours after venom injection. The hepatotoxicity was assessed through serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AP), gamma glutamyl transferase (GGT), bilirrubin and also by histopathological evaluation. All the different concentrations of Cdt venom resulted in increased levels of hepatic enzymes, when compared with the control group, except for the 100 µg/kg dose, which presented normal levels at 9 and 12 hours after venom administration. Bilirrubin levels remained unchanged by Cdt venom. Histological analysis revealed endothelial damage, inflammatory cell infiltration, as well as sinusoidal and portal congestion. Based on these observations, we may conclude that Cdt venom causes dose- and time-dependent hepatic damage in rats, characterized by elevated hepatic enzyme levels and histological alterations

    Microdroplet-Enabled Highly Parallel Co-Cultivation of Microbial Communities

    Get PDF
    Microbial interactions in natural microbiota are, in many cases, crucial for the sustenance of the communities, but the precise nature of these interactions remain largely unknown because of the inherent complexity and difficulties in laboratory cultivation. Conventional pure culture-oriented cultivation does not account for these interactions mediated by small molecules, which severely limits its utility in cultivating and studying “unculturable” microorganisms from synergistic communities. In this study, we developed a simple microfluidic device for highly parallel co-cultivation of symbiotic microbial communities and demonstrated its effectiveness in discovering synergistic interactions among microbes. Using aqueous micro-droplets dispersed in a continuous oil phase, the device could readily encapsulate and co-cultivate subsets of a community. A large number of droplets, up to ∼1,400 in a 10 mm×5 mm chamber, were generated with a frequency of 500 droplets/sec. A synthetic model system consisting of cross-feeding E. coli mutants was used to mimic compositions of symbionts and other microbes in natural microbial communities. Our device was able to detect a pair-wise symbiotic relationship when one partner accounted for as low as 1% of the total population or each symbiont was about 3% of the artificial community
    corecore