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Controlling Fe nanocrystallization in amorphous Fe 86Zr7Cu1B6
by linear varying current Joule heating

F. C. S. da Silva,a) E. F. Ferrari, M. Knobel, I. L. Torriani, and D. R. dos Santosb)

Instituto de Fı´sica ‘‘Gleb Wataghin,’’ Universidade Estadual de Campinas (UNICAMP), CP 6165,
13083-970, Campinas, Sa˜o Paulo, Brazil

~Received 4 May 2000; accepted for publication 5 July 2000!

Amorphous melt-spun Fe86Zr7Cu1B6 ribbons were annealed using the linear varying current Joule
heating method. Experimental curves of resistance (R) and temperature (T) versus applied current
(I ) allow one to follow precisely the crystallization ofa2Fe nanoparticles during annealing. This
result proves that the applied current can be considered a reliable parameter to control the crystalline
fraction in this alloy. A comparison between structural and magnetic measurements shows that the
R(I ) curve can be used as a guide to identify a condition for optimum soft magnetic properties of
this alloy. © 2000 American Institute of Physics.@S0003-6951~00!02035-0#
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Linear varying current Joule heating~LVC–JH! is a
variation of the so called dc Joule heating method1 com-
monly used to anneal metallic samples. Typically, the
plied electrical currentI varies linearly up to a final value
I final instead of being abruptly raised from zero toI final . The
main advantage of the LVC–JH is that the sample’s str
tural transformations can be easily followed through the
sistance versus currentR(I ) curve. Recently, it was experi
mentaly demonstrated that theR(I ) curve can be used to
control the fraction of precipitated Co in binary Cu–C
alloys.2,3 In this work we assert that theR(I ) curve can be
used to precisely control the crystalline fraction of Fe
amorphous Fe86Zr7Cu1B6 alloy. As an example, we used th
method to find an optimum annealing condition for the s
magnetic properties of this system.

Ribbon strips of Fe86Zr7Cu1B6 were produced by mel
spinning. The dimensions of all samples were 2.73 m
width, '25mm thick, and 10.0 cm long. All samples wer
annealed using the LVC–JH in a 1024 mbar vacuum. The
four-probe setup consisted of two pairs of U-shaped elec
cal contacts also used to clamp the sample within a sm
region in order to minimize conductive thermal losses. O
line annealing temperature was measured using a chrom
alumel thermocouple with small contact ar
('0.01 mm2) attached on the sample’s surface. The appl
current I was varied step-by-step with an incrementdI
50.03 A, and waiting timedt510 s between steps. Afte
reaching the final annealing value, the applied current w
always decreased down to zero by abrupt interrupt
~quenching!. X-ray diffraction ~XRD! measurements mad
on the annealed samples were performed by a Philips
1840 diffractometer in theQ – 2Q configuration~CuKa ra-
diation!. Hysteresis curves were obtained using a homem
hysteresis loop tracer.

Figure 1~a! shows typicalR(I ), and T(I ) curves mea-
sured during annealing of an as-cast Fe86Zr7Cu1B6 sample

a!Electronic mail: fcss@ifi.unicamp.br
b!Present address: Universidade Estadual do Norte Fluminense Ri

Janeiro, Brazil.
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with the LVC–JH. TheR(I ) curve displays a first minimum
at aboutI 5I 1st min50.25 A, after which a slow increase inR
is observed. After a maximum atI 5I max51.2 A, the resis-
tance drops down to a second minimum atI 2nd min'2.0 A
where it turns to increase again up to the sample’s mel
point at I .3.0 A. This behavior was observed in more th
100 annealed samples in the same conditions. The only
served fluctuations in the current and resistance values
peared at the critical points. These fluctuations are ma
related to geometrical factors such as sample’s average th
ness and width. Figure 1~a! shows that temperature alway

de

FIG. 1. ~a! Resistance and temperature vs annealing current using the li
varying current Joule heating method for an as cast Fe86Zr7Cu1B6 sample.
Curve~b! is obtained by crossing they axes in~a!. The arrow indicates the
point of best soft magnetic properties.
5 © 2000 American Institute of Physics
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, 
increases with the annealing current even during the re
tance drop. In fact this is a consequence of a positive hea
balance between the Joule power (I 2R) and the radiative
loss.

Crossing bothR(I ) and T(I ) curves, one obtains Fig
1~b! which is similar to theR(T) curve obtained using con
ventional furnace annealing.4 The first minimum at T
'60 °C ~close to the ferromagnetic–paramagnetic transit
of the amorphous phase! is possibly related to the scatterin
produced by the existence of low density spin clusters i
higher density ferromagnetic matrix.5 After the first mini-
mum, a typical metallic behavior, well described by t
equationR5Ro@11a(T2To)#, is observed. Here,a151.4
31024 K21, To , andRo are the thermal coeficient of resis
tance~TCR!, the initial annealing temperature, and its cor
sponding resistance value, respectively. A maximum inR
occurs atT5Tmax5450 °C.Tmax matches the value at whic
primary crystallization ofa2Fe particles starts.4 Fe crystal-
lization reduces the resistance down to a second minimu
530 °C where the effect is overcome by a new metallic
havior (a251.431023 K21) approaching that of pure crys
talline Fe (aFe5531023 K21).

Taking the R(I ) curve as a guide, we prepared 1
samples using the LVC–JH. They were annealed up t
final current (I final.I max) and quenched to room temperatu

FIG. 2. XRD measurements Fe86Zr7Cu1B6 samples annealed by the linea
varying current Joule heating method at different values ofI final .

TABLE I. Structural and magnetic data for Fe86Zr7Cu1B6 samples annealed
at different I final . No DR value was supplied for sample Nos. 11 and
because they were annealed above theI 2nd min value.

Sample
I final

~A!
DI
~A!

DR
~V!

ncr

~%!
^d&
~nm!

Hc

~A m21!
Ms

~T!
Mr

~T!

as cast ¯ ¯ ¯ 0.0 ¯ 8.0 0.30 0.10
1 1.015 0.08795 0.0275 6.9 17.1 9.0 0.43 0.
2 1.0188 0.08821 0.0623 9.9 13.8 14.5 0.51 0.
3 1.05 0.11737 0.1061 18.0 11.0 14.9 0.59 0.
4 1.1096 0.18115 0.1472 21.7 9.4 13.5 0.61 0.
5 1.1101 0.18122 0.2377 35.1 8.4 8.9 0.65 0.
6 1.1972 0.23942 0.2770 42.8 8.8 6.2 0.80 0.
7 1.2271 0.32819 0.3392 54.8 8.0 6.0 0.81 0.
8 1.3192 0.3628 0.3525 63.9 7.9 5.7 0.91 0.
9 1.3191 0.42081 0.368 68.9 8.1 4.5 0.87 0.

10 1.4656 0.53872 0.3706 75.5 8.5 3.7 0.85 0.
11 1.530 0.632 ¯ 100 10.7 3.6 0.93 0.15
12 1.800 0.872 ¯ ¯ ¯ 679 0.93 0.74rticle is copyrighted as indicated in the article. Reuse of AIP content is s
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always recording the quantityDI 5I final2I max. The differ-
ence between the resistance atI max and just before the
quenchingDR5Rmax2Rfinal was also recorded. From th
first order 110a2Fe reflection in the XRD pattern~see Fig.
2!, we calculated the average particle size^d&, and the crys-
talline fractionncr . Room temperature hysteresis loops we
made to obtain the saturation magnetizationMs , remanence
Mr , and coercive fieldHc ~see Fig. 3! of all annealed
samples~see Table I!.

Samples in Table I were ordered by their increasingDI
values. In the first steps of crystallization, i.e., whenI final

,I 2nd min, DR andncr increase withDI . This result can be
understood considering thatDI}DT @see Fig. 1~a!# and that
ncr increases with the annealing temperature. AsDR
5Ro(12gncr)

1 ~g is a positive constant!, DR is also ex-
pected to increase asDI increases. Thermal agitation be
comes more important toDR when ncr>75%, i.e., I final

>I 2nd min. The relation between the structure and theR(I )
curve makesDI a good parameter to controlncr in this sys-
tem. Also, to control the crystallization process, one can p
with the Joule heating ratedI /dt, which can be arbitrarily
changed through bothdI , anddt. In Fig. 1, the ratedI /dt
50.003 A/s produced an average temperature rate ofdT/dt
'50 K/min.

Table I also shows the evolution of the average crys
lite size ^d&. We observed that forncr56.9%, ^d&
517.1 nm and decreases down to 8.5 nm forncr575.5%.
This behavior can be explained as follows: the initial cry
talline content is made up mainly of large Fe-rich cluste
dispersed in the amorphous matrix, probably at the samp
surface.6 As a result of the heat treatment, nucleation a
growth of new crystalline clusters will rapidly occur. If th
competition between these two processes favors the nu
ation, there will be a limited crystalline growth, thus produ
ing the lower^d& for higher ncr .7 As a consequence, on
should expect a broad particle size distribution at the fi
stages of crystallization.

From the magnetic properties presented in Table I, o
sees that the coercive fieldHc initially increases withncr up
to a maximum atncr518%. This hardening effect can b
ascribed to a small reduction in the exchange correla
length (Lex). This reduction is caused by the particle si
which is inversely proportional toncr .8 Hc reaches its low-

FIG. 3. Room temperature hysteresis loops of Fe86Zr7Cu1B6 samples with
different crystalline fractions~see Table I!.
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est value atncr5100%. This optimum magnetic state is co
roborated by a high saturation magnetizationMs50.93 T,
and a low remanent magnetizationMr50.15 T. Sample No.
11 was quenched aboveI 2nd min, and showed the best so
magnetic properties. A strong hardening was observed
sample No. 12 where the coercive field reached 678 A m21

probably due to the formation of large nanocrystalline gra
or borides.

In conclusion, we have shown that the LVC–JH can
used to control the structure in the Fe86Zr7Cu1B6 alloy. In
particular, we demonstrated that the best soft magnetic s
can be identified using theR(I ) curve during annealing. We
find important to point out that this method can be also
plied to other nanocrystalline soft magnetic alloys.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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