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A B S T R A C T

Intrinsic foot muscles (IFM) are a crucial component within the human foot. Investigating their functioning can
help understand healthy and pathological behaviour of foot and ankle, fundamental for everyday activities.
Recording muscle activation from IFM has been attempted with invasive techniques, mainly investigating single
muscles. Here we present a novel methodology, to investigate the feasibility of recording physiological surface
EMG (sEMG) non-invasively and quantify patterns of activation across the whole plantar region of the foot.
sEMG were recorded with a 13× 5 array from the sole of the foot (n=25) during two-foot stance, two-foot
tiptoe and anterior/posterior sways. Physiological features of sEMG were analysed. During anterior/posterior
epochs within the sway task, sEMG patterns were analysed in terms of signal amplitude (intensity) and structure
(Sample Entropy) distribution, by evaluating the centre of gravity (CoG) of each topographical map. Results
suggest signals are physiological and not affected by loading. Both amplitude and sample entropy CoG co-
ordinates were grouped in one region and overlapped, suggesting that the region with highest amplitude cor-
responds with the most predictable signal. Therefore, both spatial and temporal features of IFM activation may
be recorded non-invasively, providing opportunity for more detailed investigation of IFM function in healthy and
patient populations.

1. Introduction

The human foot is critical for a wide range of activities of daily
living. Foot pathologies and deformities, can have a major impact on a
person’s quality of life, with significant associated costs for healthcare
providers. Issues associated with foot health can be structural (e.g.
hallux valgus, pes cavus) and/or functional (e.g. hallux limitus and
hallux rigidus) and can be associated with a range of chronic diseases
such as diabetes mellitus where peripheral neuropathy and foot ul-
cerations are common. Understanding the features of good foot health
and characteristics that underpin appropriate function is therefore im-
portant in a range of health-related fields.

The anatomy of the foot is complex, with different segments inter-
acting to provide a flexible structure and facilitate motion (Kelly et al.,
2014; Bates et al., 2013; McKeon et al., 2015). There are four layers of
intrinsic muscles arranged within the narrow compartment of the
plantar region (McKeon et al., 2015) (Fig. 1). Their anatomical posi-
tioning provides challenges to quantifying features of anatomy and
activation during weight bearing tasks. Intrinsic foot muscle properties
have been investigated using a number of techniques including

electromyography (EMG), to investigate muscle activation patterns.
The majority of EMG studies use invasive intramuscular techniques,
focusing on a single or a small selection of muscles in the foot region
(Kelly et al., 2012, 2014). Whilst providing useful insight, these ap-
proaches cannot be applied to problematic populations (e.g. diabetes
patients) and cannot quantify activity across the whole foot region and
so, interactions between or within regions of the intrinsic foot muscles
cannot be probed, although such information is required for wider as-
pects of foot function to be evaluated in healthy and pathological po-
pulations.

One method of quantifying activation across a larger region is to use
multi-channel electrode arrays. The use of a large number of electrodes
within a grid, allows the processing of myoelectric signals as topo-
graphical maps quantifying both spatial and temporal features of sig-
nals (Rojas-Martínez et al., 2013; Holtermann et al., 2008). Due to
heterogeneity either in the distribution of activated motor units or the
strategy of recruitment, the spatial distribution of myoelectric intensity
measures can change over time (Farina et al., 2008). Therefore, analysis
of maps of sEMG intensities could quantify patterns of activation within
and between muscles in a confined anatomical space. Such techniques

https://doi.org/10.1016/j.jelekin.2018.02.009
Received 15 February 2018; Accepted 20 February 2018

⁎ Corresponding author.
E-mail address: elisabetta.ferrari@stu.mmu.ac.uk (E. Ferrari).

Journal of Electromyography and Kinesiology 39 (2018) 149–155

1050-6411/ © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/10506411
https://www.elsevier.com/locate/jelekin
https://doi.org/10.1016/j.jelekin.2018.02.009
https://doi.org/10.1016/j.jelekin.2018.02.009
mailto:elisabetta.ferrari@stu.mmu.ac.uk
https://doi.org/10.1016/j.jelekin.2018.02.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jelekin.2018.02.009&domain=pdf


have been applied to different regions of the body (Falla and Farina,
2008; Gallina and Botter, 2013; Tucker et al., 2009; Rodriguez-Falces
et al., 2013). However, to date, there have been no attempts to in-
vestigate the features of intrinsic foot muscle activation through the
plantar surface of the foot using multi-channel systems.

In addition to traditional measures of sEMG intensities, changes in
the complexity of motor patterns have recently been related to changes
in motor strategies and muscle firing patterns (Rathleff et al., 2011),
quantified with the use of Sample Entropy (SampEn). SampEn is de-
fined as the negative natural logarithm of the conditional probability
that two sequences are similar to m points and remain similar at the
next point, m+1 (Richman and Moorman, 2000). Greater SampEn
values indicate a more complex signal structure and lower predict-
ability of the time series (Richman and Moorman, 2000). To our
knowledge, such analysis approaches have not previously been applied
to explore variations in signal characteristics across a muscle region nor
to study characteristics of intrinsic foot muscle activity.

Commercially available electrode arrays are flat and flexible and
can be applied to the contours of the plantar region of the foot.
However, these arrays have not been used previously on the foot region,
as one concern is that loading due to body weight could influence signal
characteristics. As such, signal amplitude changes could represent the
movement of electrodes toward/away from the intrinsic foot muscles,
rather than the physiological neuromuscular activation. Therefore, the
aim of this work was to use a commercially available multi-channel
array in a novel application to intrinsic foot muscles and to investigate
whether it is possible to non-invasively quantify physiologically re-
levant temporal and spatial activation patterns from the plantar foot
surface to provide new information about the human foot in health and
disease.

2. Methods

2.1. Participants

Twenty-five healthy participants (twenty-two males and three fe-
males, age: 41 ± 15 years, weight: 73 ± 16 kg, height: 1.7 ± 0.1m)
voluntarily took part in the study having provided informed, written
consent to do so. All procedures were approved by the local ethics
committee in the Faculty of Science and Engineering at Manchester
Metropolitan University. Exclusion criteria for participants included
foot pain or lower limb pain during the last six months.

2.2. Data acquisition

Monopolar sEMGs were collected from the intrinsic foot muscles
with a high-density grid of 64 channels (ELSCH model, OT
Bioelettronica, Turin, Italy), consisting of 13 rows and five columns,
with one missing electrode (2 mm diameter, 8 mm inter-electrode dis-
tance in both directions). Prior to attaching the grid of electrodes, the
skin of the plantar region of the right foot was lightly abraded with
abrasive paste and cleaned to remove any debris. To determine the
array location, the adipose pads at the heel and toes were palpated and
the grid positioned between these regions with the columns along the
longitudinal axis of the foot (Fig. 2). A conductive cream (Spesmedica,
Italy) was inserted into each cavity of the grid to assure proper elec-
trode skin interface. The reference electrode was positioned around the
right ankle.

Three-dimensional motion data were recorded using a 9-camera
motion-capture system (Vicon Motion Systems, Oxford, UK) positioned
around a force plate (Advanced Mechanical Technology, Inc., AMTI,
Watertown, Massachusetts, USA) with an accuracy of± 0.4mm, which
was covered with a 50mm thick Styrofoam layer to reduce electrical
noise from the ground. Fifty-four reflective markers were position on
anatomical landmarks to track whole body movement. The Plug-in Gait
marker set was utilised for anatomical landmarks on the shoulder to
knee epicondyle and, from the tibial tuberosity to the foot, a modified
Heidelberg foot marker set (Simon et al., 2006) was applied, with an
additional marker on the shank to reduce problems associated with
marker occlusion.

Each participant stood in the test area and was instructed to perform
three motor tasks: (i) two-foot quiet standing (self-selected stance
width); (ii) deliberate anterior/posterior sways (following a metronome
beating at 2 Hz) and (iii) two foot continuous standing on tiptoe. These
conditions were selected as they provided a range of quasi-static and
motion-based conditions, and also provided one condition where there
was no contact between the ground and the electrode grid meaning
EMGs would be free from external loading. Each trial lasted 30 s.
Synchronisation between force plate, motion capture data and EMG
signals was achieved with the use of an external trigger.

2.3. Data analysis

Recorded sEMGs were visually inspected and channels showing
noise due to poor skin-electrode interface contact or line interference
were reconstructed based on the interpolation of the signals from

Fig. 1. Representation of the first three layers of the intrinsic foot muscles. Panel (A) shows the most superficial muscles, Panel (B) shows the second layer and Panel (C) the third and
deep layer. The image has been amended from OpenStax (2016) down loaded from: https://commons.wikimedia.org/wiki/File:1124_Intrinsic_Muscles_of_the_Foot.jpg.
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neighbouring channels (Gallina and Botter, 2013). Wavelet analysis
was used to process EMG signals following the protocol provided by
(von Tscharner, 2000), where a filter bank of k wavelets was selected to
represent a band-pass filter for the signal, with parameters set to ensure
that the original signal intensities could be approximately reconstructed
from the sum of the k-wavelet-transformed signals. In the present study,
a filter bank of 11 (0≤ k≤ 10) wavelets was used to decompose the
myoelectric signals from each selected trial into their intensities. To
remove low frequency artefacts, the signal from the first wavelet
(10.16–33.20 Hz frequency band) was discarded so the total intensity at
any given time was calculated as the sum of the intensities of the se-
lected (1≤ k≤ 10) wavelets (Hodson-Tole et al., 2012).

2.3.1. Investigation of physiological signal content
The first analysis step focused on identifying whether signals re-

corded were the result of physiological muscle activation and to what
extent they were influenced by body weight pressure or potential
movements of the array across the foot. Therefore, mean frequency and
total intensity of myoelectric signals were calculated and compared to
standard values presented in literature (Basmajian and De Luca, 1985)
to determine how closely these features resembled previously reported
physiological values.

As peaks saturating the signal amplitude might suggest non-phy-
siological signal content, for example related to skin-electrode move-
ment, the EMG amplitude was calculated. From the wavelet trans-
formed signal, the total intensity is used as a measure of EMG intensity
over time and the sum of total intensity approximates the description of
power (von Tscharner, 2000). Half of the power can be seen as prac-
tically equal to the square of the root mean square (RMS) values,
therefore the square root of half the power is equivalent to measures of
amplitude such as RMS (von Tscharner, 2000; Wakeling et al., 2002).
The mean frequency fm (Wakeling et al., 2002; Hodson-Tole and
Wakeling, 2007) of the intensity spectrum for each sample point is
calculated from (Eq. (1):

=
∑

∑
fm

f k i
i
( )

,k c k

k j k, (1)

where fc is the central frequency of each wavelet and i is the in-
tensity at each time point, j, and wavelet, k. Mean frequency was cal-
culated for the entire length of each trial. Physiological signals in sur-
face EMGs present the majority of frequency components between a
range usually spanning 20–400 Hz (De Luca et al., 2010). If the signals
collected showed frequency and amplitude components in the ranges
reported in the literature, it can be suggested they are the result of

Fig. 2. Position of the 64 channel grid on the plantar region of the foot. (a) An MR image from one participant and the representation of the sEMG grid, positioned between the adipose
tissue of the metatarsal heads and the heel pad; (b) the whole grid on the sole of the foot, with one missing electrode at the top left corner; (c) a representative map of monopolar EMG
total intensity values distribution across the plantar region of the foot and a representative column from the grid showing clean EMG for each condition. It also shows a zoomed portion of
the most active task (tiptoe), showing the signal window when the participant moved from standing quietly to tiptoeing.
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neuromuscular drive.
Secondly, whether EMG signal amplitudes were affected by changes

in the position of the centre of pressure under the foot was investigated
using trials from the anterior/posterior sway task. For this analysis, the
centre of gravity (CoGI) within the electrode grid was calculated, based
on the spatial distribution of the EMG total intensity, and x and y co-
ordinate of the maximum activation was extracted (Farina et al., 2008).
If the signal amplitudes are affected by foot loading, we expect CoGI to
follow the same pattern of displacement as the biomechanical force
plate derived centre of pressure (CoP), i.e. forward movement of the
CoP should strongly correlate with forward movement of the EMG
based CoGI. If this relationship is not found, we posit that the sEMGs
collected can be expected to be primarily representative of muscle ac-
tivation and not predominantly the result of pressure on the electrode
grid.

The force plate based CoP was calculated with Visual 3D (C-motion.
Inc, Germantown, MD) and, when required, a bi-directional low-pass
Butterworth filter was applied (6 Hz cut-off) before events corre-
sponding to anterior and posterior sways were identified from the CoP
path. The corresponding filtered wavelet-transformed myoelectric sig-
nals were down sampled to the same frequency at which force plate
data were sampled (1000 Hz) and three events were identified in each
signal: (i) start of anterior sway; (ii) end of anterior sway/start of
posterior sway; (iii) end of posterior sway. The data points corre-
sponding to these events were selected from the CoP trace, following
manual inspection of signals. Respectively peaks and valleys of the CoP
were selected, by visualising the transition of each participant during
the task (e.g from anterior to posterior sway). For each epoch, the 64
channels intensity map was segmented to extract the region with the
highest amplitude values using Otsu’s algorithm (Chen et al., 2010).
This approach allows segmentation without relying on potentially
subjective thresholding, by minimising the weighted within-class var-
iance and maximising the between class variance of the image (grid)
intensity values. The CoGI electrode grid co-ordinates in the medial/
lateral (Gx) and anterior/posterior (Gy) direction were calculated for
the segmented channels representing the highest activation. Once the
sEMG CoGI and force plate based CoP were extracted, the correlation
between the two was calculated for the anterior and posterior sway
epochs.

2.3.2. Quantifying sEMG complexity and amplitude during different
movement tasks

In addition to identifying the physiological content of collected
sEMG signals, we sought to investigate whether differences in move-
ment patterns were associated with any changes in the sEMG ampli-
tudes and complexity. Review of the biomechanical data revealed
participants had completed the anterior/posterior sway trials using a
variety of different strategies (i.e. swaying about the ankle joint vs
around the hip joint). This variation in movement ‘strategy’ was
therefore exploited to investigate the effects on features of recorded
sEMG signals.

Firstly, to identify the movement strategy employed for each ante-
rior and posterior sway event the ankle, knee and hip joint angles were
calculated for each sway epoch. As the marker set used to track foot
motion was a multi-segment model, it was also possible to calculate the
angle between the rear-foot and the forefoot, corresponding to the
angle from the medial longitudinal arch. A bi-directional low-pass
Butterworth filter (6 Hz cut-off) was applied to marker tracks before
angle calculation, when required, to remove high frequency noise due
to skin-marker contact. For each epoch, the correlation between each
joint angle and the CoP was evaluated and the joint with the largest
correlation co-efficient was identified as the dominant joint for that
movement.

The mean sEMG intensity distribution map was calculated for each
anterior/posterior sway event. The CoGI of each map was calculated by
segmenting the regions showing activation higher than 80% of the

maximum with Otsu’s segmentation method (Chen et al., 2010). The x
(medial/lateral) and y (anterior/posterior) coordinates of the CoGI

were respectively normalised to the width and length of the foot for
each participant (foot width measured as the distance between the first
and the fifth distal metatarsal; foot length from the hallux to the cal-
caneus).

SampEn values were calculated for sEMG data from the same
anterior/posterior sway epochs. SampEn requires the selection of a
tolerance value (r), and a length of segment (m), that corresponds to the
number of data points checked, with:

= −m r N A r
B r

SampEn( , , ) ln ( )
( )

,
m

m (2)

where N is the length of the data set, r is the tolerance defined as the
proportion of the standard deviation of the time series, A represents the
count of matches for m+1 and B the count of matches for m. Similar to
previous reports (Zhang and Zhou, 2012), r=0.2 and m=2 were
empirically chosen for this study.

For each epoch, the total intensity from the wavelet transformed
myoelectric signal from each electrode channel was filtered with a high-
pass filter (2nd order Butterworth filter, cut-off 10 Hz), to remove the
slower temporal signal components, leaving components relating to
oscillations in the envelope profile (Enders et al., 2015), before SampEn
(Eq. (2) was calculated using an open-source software package
(Goldberger et al., 2000). SampEn values were normalised to the
SampEn value resulting from analysis of a randomly selected channel in
the grid, where the data points were randomly shuffled prior to SampEn
calculation. As a random sequence of data, the result should provide the
highest value of SampEn meaning all normalised values would be ≤1.
This analysis provided a map of 64 SampEn values, corresponding to
the grid of electrodes, with one map produced per anterior/posterior
sway epoch. These maps were segmented using the same Otsu seg-
mentation applied to the amplitude data. Here a third layer of seg-
mentation was introduced, resulting in a three layer map. The values
between the first layer (greatest SampEn) and third layer (lowest
SampEn) were discarded, so that CoGSE was calculated for the lowest
and highest SampEn, respectively. As with the amplitude data, the x
(medial/lateral) and y (anterior/posterior) coordinate of CoGSE, were
respectively normalised to the width and length of the foot for each
participant. Finally, to enable comparison of activation patterns be-
tween selected movement patterns, four categories were defined by the
joint identified as dominate for the associated sway epoch. Each cate-
gory corresponded to a specific joint and these are: ankle (ANK), knee
(KN), hip (HIP) and medial arch (MA). Correlation values were eval-
uated between the angle of each joint and both amplitude and SampEn
CoG values for each epoch. Epochs were then assigned to the relevant
joint category based on the highest association found.

3. Results

3.1. Physiological signal content

The mean frequency and intensity values for each movement task
are shown in Fig. 3 and were typical of physiological ranges reported in
the literature (Basmajian and De Luca, 1985; Merletti and Parker,
2004). Intensity values were also in the range of those reported in
previous studies (Kelly et al., 2012), recorded with intramuscular EMG
during tasks of similar effort. Correlation between sEMG CoGI and ki-
nematics CoP showed no correlation during the anterior/posterior sway
task (r2= 0.067 ± 0.060, maximum: 0.127, p-values: 0.74 ± 0.26),
indicating no relationship between motion and shift in the myoelectric
CoGI.

3.2. Relationship between sway movement and sEMG patterns

When comparing correlation coefficients between the CoP and each
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segment angles for each epoch during one trial, the highest correlation
co-efficient commonly differed between each epoch within the same
task. Across the group of 25 participants, the majority used three dif-
ferent dominant joints during the entire trial (one for each epoch).
Table 1 shows the number of epochs (n) that each segment showed the
highest correlation coefficient with the force plate CoP and the mean
and standard deviation r2 value and p-values for each group. The cor-
relation was strong (r2 > 0.6) for each of the four segments, but the
joint most frequently identified as having the strongest correlation with
CoP was the medial arch, whereas the least frequently identified joint
was the ankle for both sway phases.

Fig. 4 shows mean and standard deviation for x and y coordinate of
the location of the highest EMG activation and most structured signals
for both anterior and posterior sways. Regardless of the dominant joint
segment, both pair of coordinates were located within a relatively si-
milar region. The region with the highest activation corresponded to
the region where the signal is most structured and least random. CoGI

and CoGSE are both in a region between the 15–37% of foot width and
between the 14–32% of foot length, this region corresponds to the
cluster of electrodes on the third column and seventh row of the grid,
located towards the medial aspect of the foot.

4. Discussion

This study investigated whether it was possible to collect realisti-
cally physiological sEMG from intrinsic foot muscles using a multi-
channel electrode array attached to the plantar surface of the foot.
Features of the recorded signals (Fig. 3) suggest that they are

representative of physiological muscle activation and are not adversely
influenced by pressure on the electrode grid. The EMG total intensity
increasing with task effort is in line with previous reports (using in-
tramuscular data) where RMS values from quiet standing on two legs
were lower than for standing on one leg (Kelly et al., 2012). The fre-
quency values are within the physiological range (Merletti and Parker,
2004) with the highest mean frequency occurring during the anterior/
posterior task. A key concern of using electrode arrays on the plantar
foot surface was that signal characteristics would be significantly af-
fected by changes in the point of pressure application under the foot.
The results however clearly show no association (r2= 0.067) between
CoG and CoP. In addition, the highest intensity values are for the two-
foot tiptoe task, the only task where no interaction with the ground
occurs, strongly indicating that the EMG signals recorded may be
considered indicators of intrinsic foot muscle activation for the tasks
assessed here.

During the anterior/posterior sway task participants were chal-
lenged to repeatedly and regularly change their posture. Kinematic and
kinetic analysis showed that, within the same trial, the same participant
commonly displayed different kinematics. Typically, the strongest as-
sociation occurred between CoP and medial arch angle change
(Table 1). In previous studies, the action of the medial arch has been
suggested to be important for maintaining posture when performing a
balancing task (Kelly et al., 2012). This could relate to the function of
the intrinsic muscles as toe-flexors and, therefore, the high correlation
between the sway movement and the medial arch here may reflect
active gripping of the ground with the toes or passive extension/flexion
of the joint with the changing centre-of-mass vector direction.

Fig. 3. Box and whisker charts for mean frequency (Left) and total intensity (Right) for the three tasks: (i) anterior/posterior sway (95.76 ± 33.17 Hz, 83.41 ± 52.75 µV, grey boxplot),
(ii) two-foot stance (91.62 ± 27.32 Hz, 27.20 ± 20.27 µV, black boxplot), (iii) two-foot tiptoe (94.17 ± 29.32 Hz, 115.73 ± 79.24 µV, lightblue boxplot). The central mark indicates
the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers, and
the outliers are plotted individually using the ‘+’ symbol. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Mean ± S.D. r2 values from association between joint angle and CoP trace, used to define the dominant joint in each sway epoch. n indicates the number of epochs assigned to each joint.

Medial Arch (MA) Ankle (ANK) Knee (KN) Hip (HIP)

Anterior sways r2 0.896 ± 0.09
n=104

0.855 ± 0.151
n=42

0.891 ± 0.119
n=52

0.80.0092 ± 0.035
n=47

p-values 0.00005 ± 0.00002 0.0013 ± 0.0051 0.0105 ± 0.442 0.0092 ± 0.104

Posterior sways r2 0.895 ± 0.113
n=105

0.891 ± 0.114
n=35

0.909 ± 0.09
n=55

0.909 ± 0.0852
n=52

p-values 0.00001 ± 0.00005 0.00007 ± 0.00025 0.0047 ± 0.0194 0.0022 ± 0.0084
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During the anterior and posterior sways the mean position of CoG
for both amplitude and SampEn did not show large differences in po-
sition, suggesting that the phase of movement nor the dominant joint
had an effect on the regionalised pattern of activation in the intrinsic
foot muscles. Both parameters are however grouped in one region, so
the region with the highest activation and greatest signal structure
coincided. The location is related to the region associated with the
Flexor Digitorum brevismuscle, which is part of the most superficial layer
of intrinsic foot muscles (Fig. 1). Future work should consider how
other, deeper, muscles (e.g. Quadratus plantae) might contribute to such
tasks, for example by exploiting the potential to extract depth in-
formation from surface arrays (Urbatek and Smagt, 2016). The clus-
tered nature of the data presented here would be interesting to compare
against data from clinical populations to explore whether variations
might be indicative of different pathologies. For example: diabetes
patients are at high risk of foot ulcer development, however changes in
muscle activation have not been previously evaluated as a contributing
risk factor; while aging affects stability and foot muscle weakness is one
factor contributing to falls (Mickle et al, 2009). Studying and/or
monitoring patterns of intrinsic foot muscle activation could therefore
be beneficial for understanding neuromuscular contributions to foot
stability and changes due to interventions such as exercise training
(McKeon et al, 2015).

Although mean values for the position of highest activation and
most structured signals did not differ significantly with movement
pattern, differences were seen within individual participants, an ex-
ample of which is shown in Fig. 5. Here the highest activation occurred
during the hip and the lowest for the medial arch dominant movement.

This may suggest that when flexing around the hip joint the intrinsic
foot muscles actively facilitated the movement, while if the medial arch
is more strongly associated with the changes in CoP, the foot is a more
passive structure and extrinsic muscles may play a larger role in the
task. Here, larger differences in the location of the intensity and
SampEn based CoGs also occur when EMG intensity is lower (e.g. when
medial arch is dominant). In the group data these differences are lost
due to individual variation. Such variability might be related to the
position of the grid on the foot with regard participant foot size; reflect
differences in foot and intrinsic muscle morphology or differences in
neuromuscular activation strategies. Placing the array in different po-
sitions (e.g. more under to toe pad or heel pad depending on foot size)
could affect the results presented here and requires consideration if the
arrays were to be applied in different orientations or regions of the foot;
however the placement described here was chosen as it maximises the
number of channels in the array overlaying the bulk of muscle tissue in
the foot.

In conclusion, this study investigated the behaviour of intrinsic foot
muscles using a surface multi-channel approach, which opens oppor-
tunity to collect data from participants where the insertion of a needle
is not feasible, and enables exploration of temporal and spatial features
of intrinsic foot muscle activation. It is therefore possible to non-in-
vasively explore wider aspects of intrinsic foot muscle function to help
inform understanding of foot muscle properties and function in health
and disease. Future work should focus on different motion tasks, effects
of pathology and the relationship between intrinsic and extrinsic foot
muscles.

Fig. 4. Mean and standard deviation for CoGI and CoGSE co-ordinates. Data are split to show values for each dominant joint category: Medial arch (diamond); ankle (circle); knee (square)
and hip (triangle).

E. Ferrari et al. Journal of Electromyography and Kinesiology 39 (2018) 149–155

154



Conflict of interest

The authors have no conflict of interest

Financial disclosure

We certify that no party having a direct interest in the results of the
research supporting this article has or will confer a benefit on us or on
any organization with which we are associated.

References

Basmajian, J.V., De Luca, C.J., 1985. Muscles alive: their functions revealed by electro-
myography.

Bates, K.T., Collins, D., Savage, R., McClymont, J., Webster, E., Pataky, T.C., Aout, K.,
Sellers, W.I., Bennett, M.R., Crompton, R.H., 2013. The evolution of compliance in
the human lateral mid-foot. In: Proceedings of the Royal Society of London B:
Biological Sciences, 280(1769).

Chen, Y., Chen, D.-R., Li, Y., Chen, L., 2010. In: 2nd International Asia Conference on
Informatics in Control, Automation and Robotics: Otsu's Thresholding Method based
on Gray Level-gradient Two-dimensional Histogram, vol. 3, pp. 282–285.

De Luca, C., Gilmore, D., Kuznetsov, M., Serge, H.R., 2010. Filtering the surface EMG
signal: movement artifact and baseline noise contamination. J. Biomech. 43,
1573–1579.

Enders, H., Von Tscharner, V., Fau-Nigg, B.M., Nigg, B.M., 2015. Neuromuscular strate-
gies during cycling at different muscular demands. Med. Sci. Sports Exerc. 47 (7),
1450–1459.

Falla, D., Farina, D., 2008. Non-uniform adaptation of motor unit discharge rates during
sustained static contraction of the upper trapezius muscle. Exp. Brain Res. 191 (3),
363–370.

Farina, D., Leclerc, F., Arendt-Nielsen, L., Buttelli, O., Madeleine, P., 2008. The change in
spatial distribution of upper trapezius muscle activity is correlated to contraction
duration. J. Electromyogr. Kinesiol. 18 (1), 16–25.

Gallina, A., Botter, A., 2013. Spatial localization of electromyographic amplitude dis-
tributions associated to the activation of dorsal forearm muscles. Front. Physiol. 4,
367.

Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G.,
Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E., 2000. PhysioBank,
PhysioToolkit, and PhysioNet: components of a new research resource for complex
physiologic signals. Circulation 101 (23), 215–220.

Hodson-Tole, E.F., Wakeling, J.M., 2007. Variations in motor unit recruitment patterns
occur within and between muscles in the running rat (Rattus norvegicus). J. Exp. Biol.
210, 2333–2345.

Hodson-Tole, E.F., Pantall, A., Maas, H., Farrell, B., Gregor, R.J., Prilutsky, B.I., 2012.
Task-dependent activity of motor unit populations in feline ankle extensor muscles. J.

Exp. Biol. 215 (21), 3711–3722.
Holtermann, A., Gronlund, C., Karlsson, J.S., Roeleveld, K., 2008. Spatial distribution of

active muscle fibre characteristics in the upper trapezius muscle and its dependency
on contraction level and duration. J. Electromyogr. Kinesiol. 18 (3), 372–381.

Kelly, L.A., Kuitunen, S., Racinais, S., Cresswell, A.G., 2012. Recruitment of the plantar
intrinsic foot muscles with increasing postural demand. Clin. Biomech. (Bristol,
Avon) 27 (1), 46–51.

Kelly, L.A., Cresswell, A.G., Racinais, S., Whiteley, R., Lichtwark, G., 2014. Intrinsic foot
muscles have the capacity to control deformation of the longitudinal arch. J. Royal
Soc. Interface 11 (93).

McKeon, O.P., Hertel, J., Bramble, D., Davis, I., 2015. The foot core system: a new
paradygm for understanding intrinsic foot muscle function. Br. J. Sports Med. 49 (5),
290.

Merletti, R., Parker, P., 2004. Electromyography, Physiology, Engineering and Non-in-
vasive Applications.

Mickle, K.J., Munro, B.J., Lord, S.R., Menz, H.B., Steele, J.R., 2009. ISB Clinical
Biomechanics Award 2009: toe weakness and deformity increase the risk of falls in
older people. Clin. Biomech. 24 (10), 787–791.

Rathleff, M.S., Samani, A., Olesen, C.G., Kersting, U.G., Madeleine, P., 2011. Inverse re-
lationship between the complexity of midfoot kinematics and muscle activation in
patients with medial tibial stress syndrome. J. Electromyogr. Kinesiol. 21 (4),
638–644.

Richman, J.S., Moorman, J.R., 2000. Physiological time-series analysis using approximate
entropy and sample entropy. Am. J. Physiol.-Heart Circulat. Physiol. 278 (6),
2039–2049.

Rodriguez-Falces, J., Negro, F., Gonzalez-Izal, M., Farina, D., 2013. Spatial distribution of
surface action potentials generated by individual motor units in the human biceps
brachii muscle. J. Electromyogr. Kinesiol. 23 (4), 766–777.

Rojas-Martínez, M., Mañanas, M.A., Alonso, J.F., Merletti, R., 2013. Identification of
isometric contractions based on High Density EMG maps. J. Electromyogr. Kinesiol.
23 (1), 33–42.

Simon, J., Doederlein, L., McIntosh, A.S., Metaxiotis, D., Bock, H.G., Wolf, S.I., 2006. The
Heidelberg foot measurement method: development, description and assessment.
Gait Posture 23 (4), 411–424.

Tucker, K., Falla, D., Graven-Nielsen, T., Farina, D., 2009. Electromyographic mapping of
the erector spinae muscle with varying load and during sustained contraction. J.
Electromyogr. Kinesiol. 19 (3), 373–379.

Urbanek, H., Smagt, P., 2016. iEMG: imaging electromyography. J. Electromyogr.
Kinesiol. 27, 1–9.

von Tscharner, V., 2000. Intensity analysis in time-frequency space of surface myoelectric
signals by wavelets of specified resolution. J. Electromyogr. Kinesiol. 10 (6),
433–445.

Wakeling, J.M., Kaya, M., Temple, G.K., Johnston, I.A., Herzog, W., 2002. Determining
patterns of motor recruitment during locomotion. J. Exp. Biol. 205 (3), 359–369.

Zhang, X., Zhou, P., 2012. Sample entropy analysis of surface EMG for improved muscle
activity onset detection against spurious background spikes. J. Electromyogr.
Kinesiol. 22 (6), 901–907.

Fig. 5. Normalised topographical maps from one participant during anterior sways. A different dominant joint has been used by the participant for each event and differences in the
activation patterns across the grid are evident.

E. Ferrari et al. Journal of Electromyography and Kinesiology 39 (2018) 149–155

155

http://refhub.elsevier.com/S1050-6411(18)30073-7/h9000
http://refhub.elsevier.com/S1050-6411(18)30073-7/h9000
http://refhub.elsevier.com/S1050-6411(18)30073-7/h9000
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0020
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0020
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0020
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0025
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0025
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0025
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0030
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0030
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0030
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0035
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0035
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0035
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0040
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0040
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0040
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0040
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0045
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0045
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0045
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0050
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0050
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0050
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0055
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0055
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0055
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0065
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0065
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0065
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0070
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0070
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0070
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0075
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0075
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0075
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0085
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0085
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0085
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0095
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0095
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0095
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0095
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0100
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0100
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0100
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0105
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0105
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0105
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0110
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0110
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0110
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0115
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0115
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0115
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0120
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0120
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0120
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0125
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0125
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0130
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0130
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0130
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0135
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0135
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0140
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0140
http://refhub.elsevier.com/S1050-6411(18)30073-7/h0140

	Surface electromyography can quantify temporal and spatial patterns of activation of intrinsic human foot muscles
	Introduction
	Methods
	Participants
	Data acquisition
	Data analysis
	Investigation of physiological signal content
	Quantifying sEMG complexity and amplitude during different movement tasks


	Results
	Physiological signal content
	Relationship between sway movement and sEMG patterns

	Discussion
	Conflict of interest
	Financial disclosure
	References


