7,937 research outputs found
Reduction of Turbulent Transport with Zonal Flows Enhanced in Helical Systems
Gyrokinetic Vlasov simulations of the ion temperature gradient turbulence are performed in order to investigate effects of helical magnetic configurations on turbulent transport and zonal flows. The obtained results confirm the theoretical prediction that helical configurations optimized for reducing neoclassical ripple transport can simultaneously reduce the turbulent transport with enhancing zonal-flow generation. Stationary zonal-flow structures accompanied with transport reduction are clearly identified by the simulation for the neoclassically optimized helical geometry. The generation of the stationary zonal flow explains a physical mechanism for causing the confinement improvement observed in the inward-shifted plasma in the Large Helical Device [O. Motojima et al., Nucl. Fusion 43, 1674 (2003)]
Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature
ChIP-on-chip significance analysis reveals large-scale binding and regulation by human transcription factor oncogenes
ChIP-on-chip has emerged as a powerful tool to dissect the complex network of regulatory interactions between transcription factors and their targets. However, most ChIP-on-chip analysis methods use conservative approaches aimed to minimize false-positive transcription factor targets. We present a model with improved sensitivity in detecting binding events from ChIP-on-chip data. Biochemically validated analysis in human T-cells reveals that three transcription factor oncogenes, NOTCH1, MYC, and HES1, bind one order of magnitude more promoters than previously thought. Gene expression profiling upon NOTCH1 inhibition shows broad-scale functional regulation across the entire range of predicted target genes, establishing a closer link between occupancy and regulation. Finally, the resolution of a more complete map of transcriptional targets reveals that MYC binds nearly all promoters bound by NOTCH1. Overall, these results suggest an unappreciated complexity of transcriptional regulatory networks and highlight the fundamental importance of genome-scale analysis to represent transcriptional programs
Dynamical confinement in bosonized QCD2
In the bosonized version of two dimensional theories non trivial boundary
conditions (topology) play a crucial role. They are inevitable if one wants to
describe non singlet states. In abelian bosonization, color is the charge of a
topological current in terms of a non-linear meson field. We show that
confinement appears as the dynamical collapse of the topology associated with
its non trivial boundary conditions.Comment: 11 pages, figures not included, ftuv/92-
Graded-index optical fiber emulator of an interacting three-atom system: illumination control of particle statistics and classical non-separability
We show that a system of three trapped ultracold and strongly interacting
atoms in one-dimension can be emulated using an optical fiber with a
graded-index profile and thin metallic slabs. While the wave-nature of single
quantum particles leads to direct and well known analogies with classical
optics, for interacting many-particle systems with unrestricted statistics such
analoga are not straightforward. Here we study the symmetries present in the
fiber eigenstates by using discrete group theory and show that, by spatially
modulating the incident field, one can select the atomic statistics, i.e.,
emulate a system of three bosons, fermions or two bosons or fermions plus an
additional distinguishable particle. We also show that the optical system is
able to produce classical non-separability resembling that found in the
analogous atomic system.Comment: 14 pages, 5 figure
About the realization of chiral symmetry in QCD2
Two dimensional massless Quantum Chromodynamics presents many features which
resemble those of the true theory. In particular the spectrum consists of
mesons and baryons arranged in flavor multiplets without parity doubling. We
analyze the implications of chiral symmetry, which is not spontaneously broken
in two dimensions, in the spectrum and in the quark condensate. We study how
parity doubling, an awaited consequence of Coleman's theorem, is avoided due to
the dimensionality of space-time and confinement. We prove that a chiral phase
transition is not possible in the theory.Comment: 9 pages, latex, ftuv/92-
Gap solitons in quasiperiodic optical lattices
Families of solitons in one- and two-dimensional (1D and 2D) Gross-Pitaevskii
equations with the repulsive nonlinearity and a potential of the
quasicrystallic type are constructed (in the 2D case, the potential corresponds
to a five-fold optical lattice). Stable 1D solitons in the weak potential are
explicitly found in three bandgaps. These solitons are mobile, and they collide
elastically. Many species of tightly bound 1D solitons are found in the strong
potential, both stable and unstable (unstable ones transform themselves into
asymmetric breathers). In the 2D model, families of both fundamental and
vortical solitons are found and are shown to be stable.Comment: 8 pages, 11 figure
Regulation of Turbulent Transport in Neoclassically Optimized Helical Configurations with Radial Electric Fields
Gyrokinetic Vlasov simulations of the ion temperature gradient turbulence demonstrate reduction of the turbulent transport with enhanced zonal-flow generation in the neoclassically optimized helical configuration as predicted by the theoretical analysis of the zonal-flow response. The inward-shifted plasma of the Large Helical Device, thus, has better confinement than that with the standard magnetic axis position, which is consistent with the experimental results. The zonal-flow response is also investigated for case with the equilibrium radial electric field that can be generated by the ambipolar neoclassical particle transport in helical systems. The gyrokinetic theory and simulation clarify that the poloidal ExB rotation of the helically trapped particles enhances the zonal flow response which can lead to further reduction of the turbulent transport
- …
