10 research outputs found

    Major determinants of height development in Turner syndrome (TS) patients treated with GH: Analysis of 987 patients from KIGS

    No full text
    Little is known about factors determining height outcome during GH treatment in Turner syndrome (TS). We investigated 987 TS children within the Kabi International Growth Study (KIGS) who had reached near adult height (NAH) after > 4 y GH treatment (including > 1 y before puberty). Through multiple regression analysis we developed a model for NAH and total gain. Our results were as follows (median): 1) At start, age 9.7 yrs, height (HT) 118.0 cm (0.0 TS SDS), projected adult height 146.1 cm, GH dose 0.27 mg/kg wk; 2) NAH HT 151.0 cm (1.5 TS SDS); 3) Prepubertal gain 21.2 cm (1.6 TS SDS); 4) Pubertal gain 9.4 cm (0.0 TS SDS). NAH correlated (r(2) = 0.67) with (ranked) HT at GH start (+), Is' year responsiveness to GH (+), MPH (+), age at puberty onset (+), age at GH start (-), and dose (+). The same factors explained (R-2 = 0.90) the total HT gain. However, HT at GH start correlated negatively. Karyotype had no influence on outcome. Evidently, height at GH start (the taller, the better), age at GH start (the younger, the better), the responsiveness to GH (the higher, the better) and age at puberty (the later, the better) determine NAH

    Clinical characteristics and therapeutic responses in patients with Germ-line AIP mutations and pituitary adenomas : An international collaborative study

    Full text link
    Context: AIP mutations (AIPmut) give rise to a pituitary adenoma predisposition that occurs in familial isolated pituitary adenomas and less often in sporadic cases. The clinical and therapeutic features of AIPmut-associated pituitary adenomas have not been studied comprehensively. Objective: The objective of the study was to assess clinical/therapeutic characteristics of AIPmut pituitary adenomas. Design: This study was an international, multicenter, retrospective case collection/database analysis. Setting: The study was conducted at 36 tertiary referral endocrine and clinical genetics departments. Patients: Patients included 96 patients with germline AIPmut and pituitary adenomas and 232 matched AIPmut-negative acromegaly controls. Results: The AIPmut population was predominantly young and male (63.5%); first symptoms occurred as children/adolescents in 50%. At diagnosis, most tumors were macroadenomas (93.3%); extension and invasion was common. Somatotropinomas comprised 78.1% of the cohort; there were also prolactinomas (n = 13), nonsecreting adenomas (n = 7), and a TSH-secreting adenoma. AIPmut somatotropinomas were larger (P = 0.00026), with higher GH levels (P = 0.00068), more frequent extension (P = 0.018) and prolactin cosecretion (P = 0.00023), and occurred 2 decades before controls (P < 0.000001). Gigantism was more common in the AIPmut group (P < 0.000001). AIPmut somatotropinoma patients underwent more surgical interventions (P = 0.00069) and had lower decreases in GH (P = 0.00037) and IGF-I (P = 0.028) and less tumor shrinkage with somatostatin analogs (P < 0.00001) vs. controls. AIPmut prolactinomas occurred generally in young males and frequently required surgery or radiotherapy. Conclusions: AIPmut pituitary adenomas have clinical features that may negatively impact treatment efficacy. Predisposition for aggressive disease in young patients, often in a familial setting, suggests that earlier diagnosis of AIPmut pituitary adenomas may have clinical utility

    High prevalence of AIP gene mutations following focused screening in young patients with sporadic pituitary macroadenomas

    No full text
    peer reviewedBACKGROUND: Aryl hydrocarbon receptor interacting protein (AIP) mutations (AIPmut) cause aggressive pituitary adenomas in young patients, usually in the setting of familial isolated pituitary adenomas. The prevalence of AIPmut among sporadic pituitary adenoma patients appears to be low; studies have not addressed prevalence in the most clinically relevant population. Hence, we undertook an international, multicenter, prospective genetic, and clinical analysis at 21 tertiary referral endocrine departments. METHODS: We included 163 sporadic pituitary macroadenoma patients irrespective of clinical phenotype diagnosed at <30 years of age. RESULTS: Overall, 19/163 (11.7%) patients had germline AIPmut; a further nine patients had sequence changes of uncertain significance or polymorphisms. AIPmut were identified in 8/39 (20.5%) pediatric patients. Ten AIPmut were identified in 11/83 (13.3%) sporadic somatotropinoma patients, in 7/61 (11.5%) prolactinoma patients, and in 1/16 non-functioning pituitary adenoma patients. Large genetic deletions were not seen using multiplex ligation-dependent probe amplification. Familial screening was possible in the relatives of seven patients with AIPmut and carriers were found in six of the seven families. In total, pituitary adenomas were diagnosed in 2/21 AIPmut-screened carriers; both had asymptomatic microadenomas. CONCLUSION: Germline AIPmut occur in 11.7% of patients <30 years with sporadic pituitary macroadenomas and in 20.5% of pediatric patients. AIPmut mutation testing in this population should be considered in order to optimize clinical genetic investigation and management

    GH deficiency status combined with GH receptor polymorphism affects response to GH in children

    No full text
    Meta-analysis has shown a modest improvement in first-year growth response to recombinant human GH (r-hGH) for carriers of the exon 3-deleted GH receptor (GHRd3) polymorphism but with significant interstudy variability. The associations between GHRd3 and growth response to r-hGH over 3 years in relation to severity of GH deficiency (GHD) were investigated in patients from 14 countries. Treatment-naïve pre-pubertal children with GHD were enrolled from the PREDICT studies (NCT00256126 and NCT00699855), categorized by peak GH level (peak GH) during provocation test: ≤4 μg/l (severe GHD; n>45) and >4 to <10 μg/l mild GHD; n=49) and genotyped for the GHRd3 polymorphism (full length (fl/fl, fl/d3, d3/d3). Gene expression (GE) profiles were characterized at baseline. Changes in growth (height (cm) and SDS) over 3 years were measured. There was a dichotomous influence of GHRd3 polymorphism on response to r-hGH, dependent on peak GH level. GH peak level (higher vs lower) and GHRd3 (fl/fl vs d3 carriers) combined status was associated with height change over 3 years (P<0.05). GHRd3 carriers with lower peak GH had lower growth than subjects with fl/fl (median difference after 3 years K3.3 cm; K0.3 SDS). Conversely, GHRd3 carriers with higher peak GH had better growth (+2.7 cm; C0.2 SDS). Similar patterns were observed for GH-dependent biomarkers. GE profiles were significantly different between the groups, indicating that the interaction between GH status and GHRd3 carriage can be identified at a transcriptomic level. This study demonstrates that responses to r-hGH depend on the interaction between GHD severity and GHRd3 carriage
    corecore