969 research outputs found
Geometrical effects on the optical properties of quantum dots doped with a single magnetic atom
The emission spectra of individual self-assembled quantum dots containing a
single magnetic Mn atom differ strongly from dot to dot. The differences are
explained by the influence of the system geometry, specifically the in-plane
asymmetry of the quantum dot and the position of the Mn atom. Depending on both
these parameters, one has different characteristic emission features which
either reveal or hide the spin state of the magnetic atom. The observed
behavior in both zero field and under magnetic field can be explained
quantitatively by the interplay between the exciton-manganese exchange
interaction (dependent on the Mn position) and the anisotropic part of the
electron-hole exchange interaction (related to the asymmetry of the quantum
dot).Comment: 5 pages, 5 figures, to be published in Phys. Rev. Let
Influence of s,p-d and s-p exchange couplings on exciton splitting in (Zn,Mn)O
This work presents results of near-band gap magnetooptical studies on
(Zn,Mn)O epitaxial layers. We observe excitonic transitions in reflectivity and
photoluminescence, that shift towards higher energies when the Mn concentration
increases and split nonlinearly under the magnetic field. Excitonic shifts are
determined by the s,p-d exchange coupling to magnetic ions, by the
electron-hole s-p exchange, and the spin-orbit interactions. A quantitative
description of the magnetoreflectivity findings indicates that the free
excitons A and B are associated with the Gamma_7 and Gamma_9 valence bands,
respectively, the order reversed as compared to wurtzite GaN. Furthermore, our
results show that the magnitude of the giant exciton splittings, specific to
dilute magnetic semiconductors, is unusual: the magnetoreflectivity data is
described by an effective exchange energy N_0(beta-alpha)=+0.2+/-0.1 eV, what
points to small and positive N_0 beta. It is shown that both the increase of
the gap with x and the small positive value of the exchange energy N_0 beta
corroborate recent theory describing the exchange splitting of the valence band
in a non-perturbative way, suitable for the case of a strong p-d hybridization.Comment: 8 pages, 8 figure
Basic obstacle for electrical spin-injection from a ferromagnetic metal into a diffusive semiconductor
We have calculated the spin-polarization effects of a current in a two
dimensional electron gas which is contacted by two ferromagnetic metals. In the
purely diffusive regime, the current may indeed be spin-polarized. However, for
a typical device geometry the degree of spin-polarization of the current is
limited to less than 0.1%, only. The change in device resistance for parallel
and antiparallel magnetization of the contacts is up to quadratically smaller,
and will thus be difficult to detect.Comment: Revtex, 4 pages, 3 figures (eps), Definition of spin pilarization
changed to standard definition in GMR, some straight forward algebra removed.
To appear as PRB Rap. Comm. August 15t
Ferromagnetism in semiconductors and oxides: prospects from a ten years' perspective
Over the last decade the search for compounds combining the resources of
semiconductors and ferromagnets has evolved into an important field of
materials science. This endeavour has been fuelled by continual demonstrations
of remarkable low-temperature functionalities found for ferromagnetic
structures of (Ga,Mn)As, p-(Cd,Mn)Te, and related compounds as well as by ample
observations of ferromagnetic signatures at high temperatures in a number of
non-metallic systems. In this paper, recent experimental and theoretical
developments are reviewed emphasising that, from the one hand, they disentangle
many controversies and puzzles accumulated over the last decade and, on the
other, offer new research prospects.Comment: review, 13 pages, 8 figures, 109 reference
Carrier-mediated ferromagnetic ordering in Mn ion-implanted p+GaAs:C
Highly p-type GaAs:C was ion-implanted with Mn at differing doses to produce
Mn concentrations in the 1 - 5 at.% range. In comparison to LT-GaAs and
n+GaAs:Si samples implanted under the same conditions, transport and magnetic
properties show marked differences. Transport measurements show anomalies,
consistent with observed magnetic properties and with epi- LT-(Ga,Mn)As, as
well as the extraordinary Hall Effect up to the observed magnetic ordering
temperature (T_C). Mn ion-implanted p+GaAs:C with as-grown carrier
concentrations > 10^20 cm^-3 show remanent magnetization up to 280 K
About curvature, conformal metrics and warped products
We consider the curvature of a family of warped products of two
pseduo-Riemannian manifolds and furnished with metrics of
the form and, in particular, of the type , where are smooth
functions and is a real parameter. We obtain suitable expressions for the
Ricci tensor and scalar curvature of such products that allow us to establish
results about the existence of Einstein or constant scalar curvature structures
in these categories. If is Riemannian, the latter question involves
nonlinear elliptic partial differential equations with concave-convex
nonlinearities and singular partial differential equations of the
Lichnerowicz-York type among others.Comment: 32 pages, 3 figure
Ferromagnetic GaMnAs/GaAs superlattices - MBE growth and magnetic properties
We have studied the magnetic properties of (GaMnAs)m/(GaAs)n superlattices
with magnetic GaMnAs layers of thickness between 8 and 16 molecular layers (ML)
(23-45 \AA), and with nonmagnetic GaAs spacers from 4 ML to 10 ML (11-28 \AA).
While previous reports state that GaMnAs layers thinner than 50 \AA are
paramagnetic in the whole Mn composition range achievable using MBE growth (up
to 8% Mn), we have found that short period superlattices exhibit a
paramagnetic-to-ferromagnetic phase transition with a transition temperature
which depends on both the thickness of the magnetic GaMnAs layer and the
nonmagnetic GaAs spacer. The neutron scattering experiments have shown that the
magnetic layers in superlattices are ferromagnetically coupled for both thin
(below 50 \AA) and thick (above 50 \AA) GaMnAs layers.Comment: Proceedings of 4th International Workshop on Molecular Beam Epitaxy
and Vapour Phase Epitaxy Growth Physics and Technology, September 23 - 28
(2001), Warszawa, Poland, to appear in Thin Solid Films. 24 pages, 8 figure
A threading receptor for polysaccharides
Cellulose, chitin and related polysaccharides are key renewable sources of organic molecules and materials. However, poor solubility tends to hamper their exploitation. Synthetic receptors could aid dissolution provided they are capable of cooperative action, for example by multiple threading on a single polysaccharide molecule. Here we report a synthetic receptor designed to form threaded complexes (polypseudorotaxanes) with these natural polymers. The receptor binds fragments of the polysaccharides in aqueous solution with high affinities (Ka up to 19,000 M−1), and is shown—by nuclear Overhauser effect spectroscopy—to adopt the threading geometry. Evidence from induced circular dichroism and atomic force microscopy implies that the receptor also forms polypseudorotaxanes with cellulose and its polycationic analogue chitosan. The results hold promise for polysaccharide solubilization under mild conditions, as well as for new approaches to the design of biologically active molecules
A Renormalization Group Approach to Relativistic Cosmology
We discuss the averaging hypothesis tacitly assumed in standard cosmology.
Our approach is implemented in a "3+1" formalism and invokes the coarse
graining arguments, provided and supported by the real-space Renormalization
Group (RG) methods. Block variables are introduced and the recursion relations
written down explicitly enabling us to characterize the corresponding RG flow.
To leading order, the RG flow is provided by the Ricci-Hamilton equations
studied in connection with the geometry of three-manifolds. The properties of
the Ricci-Hamilton flow make it possible to study a critical behaviour of
cosmological models. This criticality is discussed and it is argued that it may
be related to the formation of sheet-like structures in the universe. We
provide an explicit expression for the renormalized Hubble constant and for the
scale dependence of the matter distribution. It is shown that the Hubble
constant is affected by non-trivial scale dependent shear terms, while the
spatial anisotropy of the metric influences significantly the scale-dependence
of the matter distribution.Comment: 57 pages, LaTeX, 15 pictures available on request from the Author
- …
