182 research outputs found

    Positive isotopies of Legendrian submanifolds and applications

    Get PDF
    International audienceWe show that there is no positive loop inside the component of a fiber in the space of Legendrian embeddings in the contact manifold ST∗MST^*M, provided that the universal cover of MM is \RM^n. We consider some related results in the space of one-jets of functions on a compact manifold. We give an application to the positive isotopies in homogeneous neighborhoods of surfaces in a tight contact 3-manifold

    Dendritic cell aggresome-like induced structures are dedicated areas for ubiquitination and storage of newly synthesized defective proteins

    Get PDF
    In response to inflammatory stimulation, dendritic cells (DCs) have a remarkable pattern of differentiation (maturation) that exhibits specific mechanisms to control antigen processing and presentation. One of these mechanisms is the sorting of polyubiquitinated proteins in large cytosolic aggregates called dendritic cell aggresome-like induced structures (DALIS). DALIS formation and maintenance are tightly linked to protein synthesis. Here, we took advantage of an antibody recognizing the antibiotic puromycin to follow the fate of improperly translated proteins, also called defective ribosomal products (DRiPs). We demonstrate that DRiPs are rapidly stored and protected from degradation in DALIS. In addition, we show that DALIS contain the ubiquitin-activating enzyme E1, the ubiquitin-conjugating enzyme E225K, and the COOH terminus of Hsp70-interacting protein ubiquitin ligase. The accumulation of these enzymes in the central area of DALIS defines specific functional sites where initial DRiP incorporation and ubiquitination occur. Therefore, DCs are able to regulate DRiP degradation in response to pathogen-associated motifs, a capacity likely to be important for their immune functions

    Intracardiac electrophysiology to characterize susceptibility to ventricular arrhythmias in murine models

    Get PDF
    Introduction: Sudden cardiac death (SCD) and ventricular fibrillation are rare but severe complications of many cardiovascular diseases and represent a major health issue worldwide. Although the primary causes are often acute or chronic coronary diseases, genetic conditions, such as inherited channelopathies or non-ischemic cardiomyopathies are leading causes of SCD among the young. However, relevant experimental models to study the underlying mechanisms of arrhythmias and develop new therapies are still needed. The number of genetically engineered mouse models with cardiac phenotype is growing, making electrophysiological studies in mice essential tools to study arrhythmogenicity and arrhythmia mechanisms and to test novel treatments. Recently, intracardiac catheterization via the jugular vein was described to induce and record ventricular arrhythmias in living anesthetized mice. Several strategies have been reported, developed in healthy wild-type animals and based on aggressive right ventricular stimulation.Methods: Here, we report a protocol based on programmed electrical stimulation (PES) performed in clinical practice in patients with cardiac rhythm disorders, adapted to two transgenic mice models of arrhythmia - Brugada syndrome and cardiolaminopathy.Results: We show that this progressive protocol, based on a limited number of right ventricular extrastimuli, enables to reveal different rhythmic phenotypes between control and diseased mice. In this study, we provide detailed information on PES in mice, including catheter positioning, stimulation protocols, intracardiac and surface ECG interpretation and we reveal a higher susceptibility of two mouse lines to experience triggered ventricular arrhythmias, when compared to control mice.Discussion: Overall, this technique allows to characterize arrhythmias and provides results in phenotyping 2 arrhythmogenic-disease murine models

    Prime Focus Spectrograph (PFS) for the Subaru Telescope: Overview, recent progress, and future perspectives

    Full text link
    PFS (Prime Focus Spectrograph), a next generation facility instrument on the 8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed, optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed over the 1.3 deg field of view. The spectrograph has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure at a resolution of ~1.6-2.7A. An international collaboration is developing this instrument under the initiative of Kavli IPMU. The project is now going into the construction phase aiming at undertaking system integration in 2017-2018 and subsequently carrying out engineering operations in 2018-2019. This article gives an overview of the instrument, current project status and future paths forward.Comment: 17 pages, 10 figures. Proceeding of SPIE Astronomical Telescopes and Instrumentation 201

    Exposure to negative socio-emotional events induces sustained alteration of resting-state brain networks in older adults

    Get PDF
    Basic emotional functions seem well preserved in older adults. However, their reactivity to and recovery from socially negative events remain poorly characterized. To address this, we designed a ‘task–rest’ paradigm in which 182 participants from two independent experiments underwent functional magnetic resonance imaging while exposed to socio-emotional videos. Experiment 1 (N = 55) validated the task in young and older participants and unveiled age-dependent effects on brain activity and connectivity that predominated in resting periods after (rather than during) negative social scenes. Crucially, emotional elicitation potentiated subsequent resting-state connectivity between default mode network and amygdala exclusively in older adults. Experiment 2 replicated these results in a large older adult cohort (N = 127) and additionally showed that emotion-driven changes in posterior default mode network–amygdala connectivity were associated with anxiety, rumination and negative thoughts. These findings uncover the neural dynamics of empathy-related functions in older adults and help understand its relationship to poor social stress recovery

    Effect of an 18-Month Meditation Training on Regional Brain Volume and Perfusion in Older Adults: The Age-Well Randomized Clinical Trial.

    Get PDF
    peer reviewedImportance: No lifestyle-based randomized clinical trial directly targets psychoaffective risk factors of dementia. Meditation practices recently emerged as a promising mental training exercise to foster brain health and reduce dementia risk. Objective: To investigate the effects of meditation training on brain integrity in older adults. Design, Setting, and Participants: Age-Well was a randomized, controlled superiority trial with blinded end point assessment. Community-dwelling cognitively unimpaired adults 65 years and older were enrolled between November 24, 2016, and March 5, 2018, in France. Participants were randomly assigned (1:1:1) to (1) an 18-month meditation-based training, (2) a structurally matched non-native language (English) training, or (3) no intervention arm. Analysis took place between December 2020 and October 2021. Interventions: Meditation and non-native language training included 2-hour weekly group sessions, practice of 20 minutes or longer daily at home, and 1-day intensive practices. Main Outcomes and Measures: Primary outcomes included volume and perfusion of anterior cingulate cortex (ACC) and insula. Main secondary outcomes included a global composite score capturing metacognitive, prosocial, and self-regulatory capacities and constituent subscores. Results: Among 137 participants (mean [SD] age, 69.4 [3.8] years; 83 [60.6%] female; 54 [39.4%] male) assigned to the meditation (n = 45), non-native language training (n = 46), or no intervention (n = 46) groups, all but 1 completed the trial. There were no differences in volume changes of ACC (0.01 [98.75% CI, -0.02 to 0.05]; P = .36) or insula (0.01 [98.75% CI, -0.02 to 0.03]; P = .58) between meditation and no intervention or non-native language training groups, respectively. Differences in perfusion changes did not reach statistical significance for meditation compared with no intervention in ACC (0.02 [98.75% CI, -0.01 to 0.05]; P = .06) or compared with non-native language training in insula (0.02 [98.75% CI, -0.01 to 0.05]; P = .09). Meditation was superior to non-native language training on 18-month changes in a global composite score capturing attention regulation, socioemotional, and self-knowledge capacities (Cohen d, 0.52 [95% CI, 0.19-0.85]; P = .002). Conclusions and Relevance: The study findings confirm the feasibility of meditation and non-native language training in elderly individuals, with high adherence and very low attrition. Findings also show positive behavioral effects of meditation that were not reflected on volume, and not significantly on perfusion, of target brain areas. Trial Registration: ClinicalTrials.gov Identifier: NCT02977819
    • 

    corecore