2,545 research outputs found

    Update on the role of elastography in liver disease

    Get PDF
    The diagnosis of liver fibrosis and the assessment of its severity are important to provide appropriate management, to determine the prognosis or the need for surveillance. Currently, for fibrosis staging, liver stiffness measurement (LSM) with the shear wave elastography (SWE) techniques is considered a reliable substitute for liver biopsy in several clinical scenarios. Nonetheless, it should be emphasized that stiffness value is a biomarker of diffuse liver disease that must be interpreted taking into consideration anamnesis, clinical and laboratory data. In patients with diffuse liver disease, it is more clinically relevant to determine the likelihood of advanced disease rather than to obtain an exact stage of liver fibrosis using a histologic classification. In this regard, a ‘rule of five’ for LSMs with vibration-controlled transient elastography (VCTE) and a ‘rule of four’ for LSMs with the acoustic radiation force impulse (ARFI)-based techniques have been proposed. In patients with advanced chronic liver disease (CLD), the risk of liver decompensation increases with increasing liver stiffness value. SWE has been proposed as a tool to predict the risk of death or complications in patients with CLD. LSM by VCTE combined with platelets count is a validated non-invasive method for varices screening, with very good results in terms of invasive procedures being spared. ARFI-based techniques also show some promising results in this setting. LSM, alone or combined in scores or algorithms with other parameters, is used to evaluate the risk of hepatocellular carcinoma occurrence. Due to the high prevalence of CLD, screening the population at risk is of interest but further studies are needed

    On the geometry of twisted symmetries: Gauging and coverings

    Get PDF
    We consider the theory of twisted symmetries of differential equations, in particular \u3bb and \u3bc-symmetries, and discuss their geometrical content. We focus on their interpretation in terms of gauge transformations on the one hand, and of coverings on the other one

    Ratio-based similarity criteria for polarimetric SAR image

    Get PDF

    Local and nonlocal solvable structures in ODEs reduction

    Full text link
    Solvable structures, likewise solvable algebras of local symmetries, can be used to integrate scalar ODEs by quadratures. Solvable structures, however, are particularly suitable for the integration of ODEs with a lack of local symmetries. In fact, under regularity assumptions, any given ODE always admits solvable structures even though finding them in general could be a very difficult task. In practice a noteworthy simplification may come by computing solvable structures which are adapted to some admitted symmetry algebra. In this paper we consider solvable structures adapted to local and nonlocal symmetry algebras of any order (i.e., classical and higher). In particular we introduce the notion of nonlocal solvable structure

    Polarimetrie Scattering based Support GLRT for Detection of Permanent Scatterers

    Get PDF

    Seismic retrofit of an existing reinforced concrete building with buckling-restrained braces

    Get PDF
    Background: The seismic retrofitting of frame structures using hysteretic dampers is a very effective strategy to mitigate earthquake-induced risks. However, its application in current practice is rather limited since simple and efficient design methods are still lacking, and the more accurate time-history analysis is time-consuming and computationally demanding. Aims: This paper develops and applies a seismic retrofit design method to a complex real case study: An eight-story reinforced concrete residential building equipped with buckling-restrained braces. Methods: The design method permits the peak seismic response to be predicted, as well as the dampers to be added in the structure to obtain a uniform distribution of the ductility demand. For that purpose, a pushover analysis with the first mode load pattern is carried out. The corresponding story pushover curves are first idealized using a degrading trilinear model and then used to define the SDOF (Single Degree-of-Freedom) system equivalent to the RC frame. The SDOF system, equivalent to the damped braces, is designed to meet performance criteria based on a target drift angle. An optimal damper distribution rule is used to distribute the damped braces along the elevation to maximize the use of all dampers and obtain a uniform distribution of the ductility demand. Results: The effectiveness of the seismic retrofit is finally demonstrated by non-linear time-history analysis using a set of earthquake ground motions with various hazard levels. Conclusion: The results proved the design procedure is feasible and effective since it achieves the performance objectives of damage control in structural members and uniform ductility demand in dampers

    Calibrating spectral estimation for the LISA Technology Package with multichannel synthetic noise generation

    Full text link
    The scientific objectives of the Lisa Technology Package (LTP) experiment, on board of the LISA Pathfinder mission, demand for an accurate calibration and validation of the data analysis tools in advance of the mission launch. The levels of confidence required on the mission outcomes can be reached only with an intense activity on synthetically generated data. A flexible procedure allowing the generation of cross-correlated stationary noise time series was set-up. Multi-channel time series with the desired cross correlation behavior can be generated once a model for a multichannel cross-spectral matrix is provided. The core of the procedure is the synthesis of a noise coloring multichannel filter through a frequency-by-frequency eigendecomposition of the model cross-spectral matrix and a Z-domain fit. The common problem of initial transients in noise time series is solved with a proper initialization of the filter recursive equations. The noise generator performances were tested in a two dimensional case study of the LTP dynamics along the two principal channels of the sensing interferometer.Comment: Accepted for publication in Physical Review D (http://prd.aps.org/

    Metastability of Asymptotically Well-Behaved Potential Games

    Full text link
    One of the main criticisms to game theory concerns the assumption of full rationality. Logit dynamics is a decentralized algorithm in which a level of irrationality (a.k.a. "noise") is introduced in players' behavior. In this context, the solution concept of interest becomes the logit equilibrium, as opposed to Nash equilibria. Logit equilibria are distributions over strategy profiles that possess several nice properties, including existence and uniqueness. However, there are games in which their computation may take time exponential in the number of players. We therefore look at an approximate version of logit equilibria, called metastable distributions, introduced by Auletta et al. [SODA 2012]. These are distributions that remain stable (i.e., players do not go too far from it) for a super-polynomial number of steps (rather than forever, as for logit equilibria). The hope is that these distributions exist and can be reached quickly by logit dynamics. We identify a class of potential games, called asymptotically well-behaved, for which the behavior of the logit dynamics is not chaotic as the number of players increases so to guarantee meaningful asymptotic results. We prove that any such game admits distributions which are metastable no matter the level of noise present in the system, and the starting profile of the dynamics. These distributions can be quickly reached if the rationality level is not too big when compared to the inverse of the maximum difference in potential. Our proofs build on results which may be of independent interest, including some spectral characterizations of the transition matrix defined by logit dynamics for generic games and the relationship of several convergence measures for Markov chains

    Bayesian parameter estimation in the second LISA Pathfinder Mock Data Challenge

    Get PDF
    A main scientific output of the LISA Pathfinder mission is to provide a noise model that can be extended to the future gravitational wave observatory, LISA. The success of the mission depends thus upon a deep understanding of the instrument, especially the ability to correctly determine the parameters of the underlying noise model. In this work we estimate the parameters of a simplified model of the LISA Technology Package (LTP) instrument. We describe the LTP by means of a closed-loop model that is used to generate the data, both injected signals and noise. Then, parameters are estimated using a Bayesian framework and it is shown that this method reaches the optimal attainable error, the Cramer-Rao bound. We also address an important issue for the mission: how to efficiently combine the results of different experiments to obtain a unique set of parameters describing the instrument.Comment: 14 pages, 4 figures, submitted to PR

    Nonlocal aspects of λ\lambda-symmetries and ODEs reduction

    Full text link
    A reduction method of ODEs not possessing Lie point symmetries makes use of the so called λ\lambda-symmetries (C. Muriel and J. L. Romero, \emph{IMA J. Appl. Math.} \textbf{66}, 111-125, 2001). The notion of covering for an ODE Y\mathcal{Y} is used here to recover λ\lambda-symmetries of Y\mathcal{Y} as nonlocal symmetries. In this framework, by embedding Y\mathcal{Y} into a suitable system Y′\mathcal{Y}^{\prime} determined by the function λ\lambda, any λ\lambda-symmetry of Y\mathcal{Y} can be recovered by a local symmetry of Y′\mathcal{Y}^{\prime}. As a consequence, the reduction method of Muriel and Romero follows from the standard method of reduction by differential invariants applied to Y′\mathcal{Y}^{\prime}.Comment: 13 page
    • …
    corecore