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Abstract

We consider the theory of twisted symmetries of differential equations,
in particular λ and µ-symmetries, and discuss their geometrical content.
We focus on their interpretation in terms of gauge transformations on the
one hand, and of coverings on the other one.

Dedicated to Josiph Krasil’shich on his 70th anniversary

1 Introduction

The Geometry of Differential Equations has been a constant topic in the re-
search by Josiph Krasil’shich, and a great deal of this has been devoted to (the
symmetry approach to) the study of symmetries of differential equations.

These were first considered systematically by Sophus Lie, who laid down the
theory of point and contact symmetries. This theory was later on generalized
in several ways by many authors (including JK). The basic idea by Lie is that
once we know how the basic (independent and dependent, possibly allowing first
derivatives to transform in a special way) variables transform, we also know how
higher derivative transform:this corresponds to the concept of prolongation of
a vector field, which is thus lifted from the phase manifold M to the associated
jet bundle JkM or J∞M , of finite or infinite order [1, 8, 28, 47, 48, 51].

In most of the generalizations of Lie-point and contact symmetries, this
feature is preserved: one considers more general types of vector fields in M (e.g.
generalized vector fields), but the action these induce in JkM or J∞M is still
obtained from the action in M by means of the standard prolongation operation
– and hence the standard prolongation formula.
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There is, however, a class of generalizations for which this does not hold true;
these were first considered by Muriel and Romero [33, 34] in the specific case of
scalar ODEs1, and in this case one speaks of λ-symmetries or of C∞-symmetries;
in the general case they are known as twisted symmetries [16, 17]. For these, the
very prolongation operation is modified, so that the (twisted) prolongation of a
vector field in M to JkM or J∞M does not describe its action on (standard)
derivatives. This notwithstanding, twisted symmetries turn out to be “as useful
as standard ones” in reducing or solving nonlinear differential equations (both
ODEs and PDEs) and are thus of great interest both from the abstract and
geometrical point of view and from the concrete and applicative one.

Over the years, we have (separately) worked on this topic, and shown rela-
tions of it with two subjects which are also central in the scientific interests of
Josiph Krasil’shich; that is, the theory of coverings [27, 28] on the one hand, and
that of gauge transformations [15, 45, 46] one the other one (for the relations
with twisted symmetries, see [3, 4] and [18, 19, 20] respectively).

The purpose of this paper is to review, and partially reconcile, these two
points of view on twisted symmetries, and their relations with relevant geometric
structures.

2 Symmetries of differential equations

We assume the reader is familiar with symmetry of differential equations; the
purpose of this section is thus mainly to fix notation.

We will consider differential equations2 with independent variables xi (i =
1, ..., p) and dependent variables ua (a = 1, ..., q); partial derivatives will be
denoted by uaJ , where J is a multi-index J = {j1, ..., jp} of order |J | = j1+...+jp
and

uaJ =
∂|J|ua

∂xj11 ...∂x
jp
p

(1)

(here and somewhere in the following we moved downstairs the vector index of
the x for typographical convenience). We denote by u(k) the set of all partial
derivatives of order k, and by u[n] the set of all partial derivatives of order k ≤ n.

We also denote by J̃ = (J, i) the multi-index with entries j̃k = jk + δik.
The x are local coordinates in a manifold B, while u are local coordinates in

a manifold U ; we consider the phase manifold M = B×U , which has a natural
structure of bundle (M,π,B) over B with fiber U .

We also associate to M its Jet bundles JnM , which associate to any point
(x, u) the set of equivalence classes of sections being mutually tangent of order
n; these are described in local coordinates by (x, u, u(1), ..., u(n)). Note that

1From the point of view of the general theory built afterwards, this is a degenerate case in
many ways; which made not so immediate to understand the underlying Geometry.

2For the moment, ODEs or PDEs will not make a difference, and differential equations,
are always possibly vector ones, i.e. systems; similarly, functions are always possibly vector
ones – albeit in some cases we will use vector indices explicitly to avoid possible confusion.
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JnM should be thought as equipped with a contact structure, generated by the
contact forms

ϑaJ := duaJ − uaJ,i dx
i . (2)

A (uni-valued) function u = f(x) corresponds to a section γf of (M,π,B);
this is just the graph of f ,

γf = {(x, u) ∈ B × U : u = f(x)} .

We will denote the set of sections of M as Σ(M), and γf ∈ Σ(M).
If we assign u = f(x), we are implicitly assigning also all of its derivatives;

thus γf ∈ Σ(M) also identifies prolongations (of any order) γ
(n)
f ∈ Σ(JnM); in

multi-index notation,

γ
(n)
f = {(x, u[n]) ∈ JnM : uJ = (∂Jf)(x) , |J | ≤ n} .

These can be thought of as sections of (JnM,πn, B).
If we consider a differential equation3 of order n, say

∆ := F `(x, u, u(1), ..., u(n)) = 0 (` = 1, ..., L) (3)

(we always assume F to be smooth in all of its arguments) this identifies a
manifold in JnM , called the solution manifold S∆; if ∆ is non-degenerate, this
is a manifold of codimension s.

A function u = f(x) is a solution to ∆ if and only if

γ
(n)
f ⊂ S∆ ⊂ JnM .

This also means that vector fields Y in JnM which are both tangent to S∆

and preserve the contact structure map solutions into solutions.
The condition to preserve the contact structure can be stated more precisely

as follows: if Θ is the Cartan ideal generated by the ϑaJ , then Y preserves the
contact structure if

LY (Θ) ⊆ Θ ,

i.e. if for any ω ∈ Θ we have LY (ω) ∈ Θ. In view of the properties of Cartan
ideals, this is the case if and only if LY (ϑaJ) ∈ Θ, i.e. if and only if there are
functions T aKbJ ∈ C∞(JnM,R) such that

LY (ϑaJ) = T aKbJ ϑbK .

By a standard computation, this is the case if and only if the coefficients of the
vector field

Y = ξi
∂

∂xi
+ ψaJ

∂

∂uaJ

satisfy the prolongation formula

ψaJ,i = Diψ
a
J − uaJ,k (Diξ

k) . (4)

3Note that by this we always mean possibly a system of equations, ODEs or PDEs.
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Note that – setting ψa0 = ϕa – this means that Y is the prolongation of the
vector field on M

X = ξi ∂i + ϕa ∂a ;

this is a well defined vector field in M provided

ξi = ξi(x, u) , ϕa = ϕa(x, u) ;

we will assume this to be the case4, and in this case we also write

Y = X(n)

to emphasize that the vector field we are considering in JnM is the prolongation
of the vector field X in M .

If such a vector field is tangent to S∆, i.e.

X(n) : S∆ → TS∆ , (5)

we say that X is a Lie-point symmetry for ∆. (More precisely, X is then the
generator of a one-parameter local group of symmetries; but this slight abuse
of notation is commonplace in the literature, and we will adhere to it.)

If ∆ is written as in eq.(3), then the condition that X is a Lie-point symmetry
can be expressed as

X(n) [Fµ]F=0 = 0 . (6)

Remark 1. Note that in (6) we are only requiring the invariance of the level
set F = 0, not of all the level sets F = c; in the latter case, we would speak of
strong symmetries. �

3 Coverings and nonlocal symmetries

We consider the notion of (first order) covering of a differential equation; here
we discuss it in terms of coordinates, for the sake of brevity; see [27, 28] for an
intrinsic discussion.

Together with independent variables x ∈ B and dependent ones u ∈ U , with
local coordinates respectively (x1, ..., xp) in B and (u1, ..., uq) in U , we consider
auxiliary variables w ∈ W , with W a smooth manifold with local coordinates
(w1, ..., wr).

Then the system of m equations

∆ := F a(x, u, u(1), ..., u(n)) = 0 (a = 1, ...,m) (7)

is augmented to a system ∆̃ of m + s equations with a new set of s = r · p
auxiliary first order equations

wµi = Hµ
i (x, u, w) . (8)

4In other words, here we are not considering contact or generalized vector fields and sym-
metries.
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This also means that the total derivative operators, which in JnM are

Di :=
∂

∂xi
+ uai

∂

∂ua
+ uaij

∂

∂uaj
+ ... ,

are now modified into total derivative operators acting in a larger space,

D̃i = Di + wµi
∂

∂wµ
.

Note that the equations (8) have a compatibility condition; that is, we should
require

D̃iH
µ
j = D̃j H

µ
i ∀µ = 1, ..., r , ∀i, j = 1, ..., p . (9)

The relevant – interesting and applicable – case occurs when these compatibility
conditions (9) just amount to the original equations (7). In this case indeed the

original system ∆ is properly embedded in the system ∆̃, or – seen the other
way round – ∆̃ is a covering of the original system ∆.

Example 1. Consider the Gibbons-Tsarev equation [23]

uxx + ut uxt − ux utt + 1 = 0 ; (10)

A covering for this is provided by the equations [26, 49]

wt =
1

ux + ut w − w2
:= H(t) ,

wx =
w − ut

ux + ut w − w2
:= H(x) .

Indeed, if we compute DtH(x)−DxH(t) and substitute for wt and wx according
to the above equations, we obtain

1− uttux + utuxt + uxx
[ux + (ut − w)w]2

,

and immediately recognize that this vanishes if and only if (10) holds. �

Example 2. Consider the Burgers equation5

ut = uxx + uux . (11)

A covering of the Burgers equation is provided by adding the auxiliary equations
written in matrix form as

∂W

∂x
= A W ,

∂W

∂t
= B W , (12)

5As well known, this is mapped into the heat equation vt = vxx by the Hopf-Cole trans-
formation. Note also that sometimes the equation is written in a slightly different (potential)
form, i.e. as wt = wxx +(1/2)w2

x; taking the x derivative of this we get wxt = wxxx +wxwxx;
setting now u = wx we get (11).
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where we have defined the 2× 2 real matrices

W =

(
w11 w12

w21 w22

)
;

A =

(
4η 2u+ 4η

2u− 4η −4η

)
, B =

(
2uη u2 + 2ux + 2uη

u2 + 2ux − 2uη −2uη

)
.

In fact, computing χ = Dt[AW ]−Dx[BW ] and then substituting according to
(12), we immediately obtain that χ = 0 if and only if (11) holds. �

Coming back to the general discussion, we can now look for standard symme-
tries of the augmented equation ∆̃. These will be vector fields to be prolonged
in the standard way in the augmented space: thus if X̃ is a vector field in
M̃ = M ×W = B × U ×W , given in local coordinates by

X̃ = ξi(x, u, w)
∂

∂xi
+ ϕa(x, u, w)

∂

∂ua
+ ηµ(x, u, w)

∂

∂wµ

≡ ξi ∂i + ϕa ∂a + ηµ ∂µ , (13)

its prolongation Ỹ = X̃(n) will be a vector field

Ỹ = ξi
∂

∂xi
+ ψaJ

∂

∂uaJ
+ χµJ

∂

∂wµJ

≡ ξi ∂i + ψaJ ∂
J
a + χµJ ∂

J
µ , (14)

where J are multi-indices, ψa0 := ϕa, χµ0 := ηµ, and the coefficients follow the
standard prolongation rule, i.e. (recalling the total derivative operators are now

the D̃i)

ψaJ,i = D̃iψ
a
J − uaJ,k D̃iξ

k ,

χµJ,i = D̃iχ
µ
J − wµJ,k D̃iξ

k .

If such a vector field on JnM̃ is tangent to the solution manifold for the
system ∆̃, i.e. if X̃ is a symmetry for ∆̃, then the restriction of X̃ to M will in
general be a nonlocal symmetry for the equation ∆ [27, 28].

It should be noted that if we just look at the restriction of Ỹ to JnM , this
is

Y = ξi
∂

∂xi
+ ψaJ

∂

∂uaJ
≡ ξi ∂i + ψaJ ∂

J
a ;

the coefficients ψaJ do now appear to follow – from the point of view of JnM –
the modified prolongation rule

ψaJ,i =
(
Diψ

a
J − uaJ,kDiξ

k
)

+ wµi
(
∂µψ

a
J − uaJ,k (∂µξ

k)
)

=
(
Diψ

a
J − uaJ,kDiξ

k
)

+ Hµ
i

(
∂µψ

a
J − uaJ,k (∂µξ

k)
)
. (15)

In the second line, we have used (8).
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Remark 2. Note that if the Hµ
i in (8) are such that their solutions wµ can

be expressed as a local function of the u – which in particular is the case if we
allow the Hµ

i to depend also on the x-derivatives of the u, e.g. hµi = cµau
a
i , or if

the Hµ
i depend only on the x but not on the u – then the above formulas still

yield local (albeit not following the standard prolongation formula) prolonged
vector fields. �

Finally, we note that one could as well consider generalized symmetries; that
is – with the shorthand notation introduced in (13) – vector fields

X̂ = ξi ∂i + ϕa ∂a + ηµ ∂µ

where the functions ξ, ϕ, η depend not only on (x, u, w) but also on derivatives
of u and w up to some order. If the dependence on derivatives is only in the ηµ,
and this is limited to derivatives6 of u, i.e. if we have

X̂ = ξi(x, u, w)
∂

∂xi
+ ϕa(x, u, w)

∂

∂ua
+ ηµ(x, u, w;ux, uxx, ...)

∂

∂wµ
, (16)

then we speak of semi-classical symmetries. This will play a special role in the
following, see Section 7 below.

4 Twisted symmetries

All different symmetries, Lie-point, non-local, generalized etc., considered in
the literature share the same fundamental aspect: there is an action in M , and
this is lifted – i.e. prolonged – to Jet bundles JnM requiring the prolonged
vector field preserves the contact structure; this requirement is embodied by
the prolongation formula.

It was then rather surprising that in 2001 Muriel and Romero [33, 34] pro-
posed a different type of generalization, where the prolongation formula itself
was modified. Starting with these work (see also [35, 36, 37, 38, 39, 40, 41,
42, 43, 44]), several kinds of twisted symmetries have been considered in the
literature [16, 17].

For these, one considers a Lie-point vector field X in M , but the prolongation
operation is deformed in a way which depends on some kind of auxiliary object.
In different realizations this can be a scalar function (λ-symmetries [33, 34]),
a matrix-valued one-form satisfying the horizontal Maurer-Cartan equations –
i.e. a set of matrices satisfying a compatibility condition (µ-symmetries [10]) –
or also a matrix acting in an auxiliary space (σ-symmetries [11]).7

It should also be stressed that twisted symmetries are more easily used for
higher order differential equations (ordinary or partial), while the case of first

6Note that if the auxiliary equations are first order, this is automatically true.
7An actual “twisting” only occurs in the latter cases, not for λ-symmetries – where one

has instead a “stretching” – but it is convenient to use this collective name in all cases where
the prolongation operation is modified [16, 17].
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order equations is in some sense degenerate from this point of view, and presents
several additional problems.

Here we provide a sketchy discussion of different types of twisted symmetries;
the reader can consult e.g. [16, 17] for further detail and a review.

4.1 λ-symmetries

The first type of twisted symmetries to be introduced was λ-symmetries (the
name C∞ symmetries also appears in the literature). These were originally
introduce to deal with scalar ODEs of any order, and the name “λ-symmetries”
refers to the auxiliary C∞ function λ(t, x, ẋ) defining the twisted prolongation,
which in this case is called λ-prolongation. In fact, this is recursively defined as

ψa(k+1) = Dxψ
a
(k) − ua(k+1) Dx ξ + λ

(
ψa(k) − ua(k) ξ

)
= (Dx + λ)ψa(k) − ua(k+1) (Dx + λ) ξ . (17)

We will denote the λ-prolongation of order k of the vector field X in M as X
(k)
λ .

The vector field X in M is said to be a λ-symmetry of the equation ∆ (of
order k) if

X
(k)
λ : S∆ → TS∆ . (18)

Note that in general a vector field is a λ-symmetry of a given equation only for
a specific choice of the function λ.

Remark 3. In general, the commutator of the λ-prolongations of two vector
fields X,Y in M is not the λ-prolongation of their commutator, i.e. if Z = [X,Y ]
then (in general, for λ 6= 0) [

X
(n)
λ , Y

(n)
λ

]
6= Z

(n)
λ . (19)

In fact, consider e.g. X = x∂u, Y = u∂u; in this case Z = [X,Y ] = X, and

δ := [X
(1)
λ , Y

(1)
λ ]− Z(1)

λ = xλ∂ux 6= 0. �

We recall that reduction of ODEs is based on properties of differential invari-
ants for a prolonged vector field. In particular, we know that once differential
invariants of order zero and of order one – call them η and ζ(1) – are known, then
those of higher orders can be built by just applying total derivative operators;
that is (denoting by x the independent variable)

ζ(n+1) :=
Dxζ

(n)

Dxη

is a differential invariant of order (n + 1) if ζ(n) is a DI of order n and η a DI
of order zero. This property, which stems from the algebra of the prolongation
operation, is also known as “invariant by differentiation property”, or IBDP.

Lemma (IBDP Lemma). The IBDP holds for λ-prolonged vector fields.
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Proof. This follows from direct computation; see e.g. [33, 34], or [16]. �

Remark 4. It is the IBDP Lemma that makes λ-symmetries “as useful as
standard ones”, as discussed e.g. in [16, 17]. �

Remark 5. It was pointed out by Pucci and Saccomandi [50] that λ-prolonged
vector fields can be characterized as the only vector fields in JkM with the
property that their integral lines are the same as the integral lines of some
vector field which is the standard prolongation of some vector field in M . This
remark was fully understood only some time after their paper, and was the basis
for many of the following developments, discussed below. �

4.2 µ-symmetries

The λ-prolongation is specifically designed to deal with ODEs (or systems
thereof); a generalization of it aiming at tackling PDEs (or systems thereof)
is the µ-prolongation. This can of course also be applied to ODEs and Dynam-
ical Systems, as we will see below.

4.2.1 PDEs

Now the relevant object is not a single matrix, but an array of matrices Λi, one
for each independent variable. These are better encoded as a (GL(n,R)-valued)
horizontal one-form

µ = Λi(x, u, ux) dxi . (20)

The matrices Λi should satisfy a compatibility condition, i.e.

Di Λj − Dj Λi + [Λi,Λj ] = 0 ; (21)

this is immediately recognized as the horizontal Maurer-Cartan equation, or
equivalently as a zero-curvature condition for the connection on TU identified
by

∇i = Di + Λi . (22)

If µ satisfies (21), we can define µ-prolongations in terms of a modified pro-
longation formula, called of course µ-prolongation formula (and which represents
now an actual twisting of the familiar prolongation operation):

ψaJ,i = Diψ
a
J − uaJ,k Di ξ

k + (Λi)
a
b

(
ψbJ − ubJ,k ξ

k
)

= (Di I + Λi)
a
b ψ

b
J − ubJ,k (Di I + Λi)

a
b ξ
k . (23)

We will denote the µ prolongation (of order k) of the vector field X in M as

X
(k)
µ . The vector field X in M is said to be a µ-symmetry of the equation ∆

(of order k) if
X(k)
µ : S∆ → TS∆ . (24)
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Note that in general a vector field is a µ-symmetry of a given equation only for
a specific choice of the one-form µ.

Remark 6. In λ-prolongations the prolongation operation is modified, but it
acts separately on the different vectorial components in TU (and in TUJ). In µ-
prolongations, instead, the different vector components of TU (and of TUJ) are
“mixed” by the prolongation operation which thus operates a “twisting” among
different components of the vector field; this is the origin of the name “twisted
symmetries”. Obviously, λ-symmetries are – even in the vector framework – a
special case of µ-symmetries, with matrices Λi being multiple of the identity
matrix through functions λi. �

Remark 7. It is known that µ-symmetries (and hence λ-symmetries) are re-
lated to nonlocal symmetries [3, 38, 43]; we will discuss this relation below. �

4.2.2 ODEs

In the case of ODEs one just replaces the scalar function λ : J1M → R with a
matrix function Λ : J1M → Mat(n) and define a “Λ-prolongation” [6, 7] (which
is just a special case of µ-prolongation, for µ = Λdx)

ψa(k+1) = Dxψ
a
(k) − ua(k+1) Dx ξ + Λab

(
ψb(k) − ub(k) ξ

)
= (Dx I + Λ)ab ψ

b
(k) − ub(k+1) (Dx I + Λ)ab ξ . (25)

In this ODE case we just have µ = Λ dx (only one component), and (21) is
identically satisfied.

Remark 8. The IBDP property is in general not holding for µ-prolonged vector
fields, not even in the ODEs framework; the exception is the case where the Λi
are diagonal matrices. This means that in general µ-symmetries can not be used
to obtain a symmetry reduction of ODEs (see however Remark 9 below). �

4.2.3 Recursion formula

The µ-prolongation X
(k)
µ , which we will now write in components as X

(k)
µ =

ξi∂i + (ψaJ)(µ)∂
J
a , of a vector field X in M is defined through (23); however in

some cases and applications it is relevant to characterize these in terms of the
difference

F aJ := (ψaJ)µ − (ψaJ)0 . (26)

It can be shown [10, 22] that the F aJ satisfy the recursion relation

F aJ,i = δab

[
Di

(
ΓJ
)b
c

]
(DiQ

c) + (Λi)
a
b

[(
ΓJ
)b
c

(DJQ
c) + DjQ

b
]
, (27)

where we have written
Qa = ϕa − uai ξ

i , (28)
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and the ΓJ are certain matrices whose detailed expression can be computed
[10, 22] but is not essential.

Remark 9. With the notation (28), the set IX of X-invariant functions is

characterized by Qa|IX = 0. It follows from (27) that X
(k)
µ coincides with

X
(k)
0 on IX . This means that µ-symmetries are as good as standard Lie-point

symmetries to obtain invariant solutions to differential equations – which is what
we do when we have determined symmetries of PDEs. �

4.3 σ-symmetries

When dealing with symmetries of differential equations we often use them one
at a time, in particular for ODEs – e.g. when we reduce the order of the
equation. But in general we have a k-dimensional Lie algebra G of symmetries;
the prolongation acts separately on each vector field in G.

It turns out that a different kind of modification of the prolongation op-
eration is possible when we consider a Lie algebra G of vector field, or more
generally a system of vector fields which are in involution (in the sense of
Frobenius); in this case the “twisting” corresponds to mixing the different vector
fields in the prolongation operation. This approach has received the name of “σ-
prolongation” and correspondingly one speaks of “σ-symmetries” [11, 12, 13, 14].
This approach is specially suited to the study of dynamical systems.

We will not discuss this type of twisted symmetries here; the reader is re-
ferred to the original papers cited above or to the reviews [16, 17].

5 Twisted prolongations and gauge groups

Let us consider the case where the fields ua = ua(x), i.e. the dependent vari-
ables, take values in a vector space U = Rq; in this case M is a vector bundle.8

We can then operate an x-dependent change of frame in U ; as well known,
this means acting on our fields (and equations) by a gauge transformation.

When we deal with JnM , there are natural coordinates uaJ in it. Note
that for a given multi-index J the variables uJ = (u1

J , ..., u
q
J) can be seen as

belonging to a vector space UJ isomorphic to U ; we can then prolong the gauge
transformation defined on U (more precisely, on the bundle (M,π,B)) to a
gauge transformation in JNM (more precisely, on the bundle (JnM,πn, B)) by
acting in the same way on all the vector spaces UJ , |J | = 0, ..., n.

This induces an action on vector fields on M as well as on vector fields on
JnM ; it is rather obvious that such an action is specially simple if we look at
vertical vector fields, including the evolutionary representative

Xv = (ϕa − uai ξ
i)

∂

∂ua
:= φa(x, u, ux)

∂

∂ua

8The general case can be treated along the same lines; but as our considerations will be
local, this would just lead to a heavier notation and discussion.
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of any Lie-point vector field

X = ξi(x, u)
∂

∂xi
+ ϕa(x, u)

∂

∂ua

in M .9

Let us thus consider vector fields X on M and their prolongations X(n)

on JnM , or better the evolutionary representatives Xv and their prolongations

X
(n)
v ; and let us consider the gauge transformed of these. Due to the local

nature of the gauge transformation, the gauge transformed of X
(n)
v is not the

prolongation of the gauge transformed of Xv.
Let us denote the µ-prolongation operator defined in Section 4.2 as Prµ, with

Pr = Pr0 the standard prolongation operator, and denote by γ a given gauge
transformation.

Then it turns out that the diagram (where now all vector fields are vertical,
albeit this is not explicitly indicated in order to keep notation simple)

X
γ−→ WyPr0

yPrµ

Y
γ−→ Z

(29)

is commutative, provided γ = Rab(x, u) and µ are related by

µ = Rac
[
Di (R−1)cb

]
dxi := Λi dxi . (30)

This is readily seen for first prolongations10 just working in coordinates. We
write

X = φa
∂

∂ua
, W = (Rab φ

b)
∂

∂ua
;

the (standard) first prolongations of these are respectively

Y = X(1) = φa
∂

∂ua
+ (Diφ

a)
∂

∂uai
,

Z = W (1) = (Rabφ
b)

∂

∂ua
+ [Di(R

a
bφ
b)]

∂

∂uai

= Rabφ
b ∂

∂ua
+ Rab(Diφ

b)
∂

∂uai
+ (DiR

a
b)φ

b ∂

∂uai

= Rab

[
φb

∂

∂ua
+ (Diφ

b)
∂

∂uai

]
+
[
(DiR

a
`) (R−1)`mR

m
b φ

b
] ∂

∂uai
.

On the other hand, it is immediate to see that the gauge transformed of Y is

γ(Y ) = Rab

[
φb

∂

∂ua
+ (Diφ

b)
∂

∂uai

]
;

9Note that, as well known, Xv is in general (that is, unless ξi = 0 for all i = ..., p) a
generalized vector field, and the formalism of evolutionary representatives has full geometrical
sense only when considering infinite jets J∞M [28].

10And hence for higher ones as well, recalling that the (n + 1)-th prolongation is the first
prolongation of the n-th prolongation.
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thus in order to have a commutative diagram we need to choose

µ = − (DiR)R−1 dxi = RDiR
−1 dxi .

In other words, the matrices Λi in the definition of the horizontal one-form µ
must be chosen according to (30).

As mentioned above, this computation extends at once to higher order pro-
longations.

Remark 10. Note that the compatibility condition discussed in Section 4.2 is
automatically satisfied. In fact, now

DiΛj − DjΛi = Di (RDjR
−1) − Dj (RDiR

−1)

= (DiR) (DjR
−1) + R (DiDjR

−1) − (DjR) (DiR
−1) − R (DjDiR

−1)

= (DiR) (DjR
−1) − (DjR) (DiR

−1) ;

[Λi,Λj ] = R (DiR
−1) ·R (DjR

−1) − R (DjR
−1) ·R (DiR

−1)

= −R[R−1 (DiR)R−1]R (DjR
−1) + R[R−1 (DjR)R−1]R (DiR

−1)

= − (DiR) (DjR
−1) + (DjR) (DiR

−1) .

Thus the horizontal Maurer-Cartan equation (21) is satisfied. �

We summarize our discussion in the form of the following statements (their
proof is in fact given by the previous discussion):

Proposition 1. Z be the µ-prolongation of the vertical vector field W , defined
on (M,π,B), to JnM . Then there are vertical vector fields X on M and Y
on JnM which are gauge-equivalent to W and Z respectively, and such that
Y is the standard prolongation of X. The gauge transformation realizing this
equivalence and the horizontal one-form µ in J1M are related by (30).

Corollary. Let W be a µ-symmetry for a given differential equation ∆. Then
there is a vector field X on M such that a gauge transform of its standard
prolongation is tangent to S∆ ⊂ JnM .

6 Twisted prolongations and gauging of
derivatives

A different approach, also based on gauge transformations, has been followed
by Morando [31]. She noted that one can describe λ and µ symmetries in terms
of gauge-deformed Lie and exterior derivatives. We will follow her work, and
work directly with µ-prolongations and µ-symmetries; as already mentioned,
this includes λ-prolongations and λ-symmetries as a special case.

In the case of µ-prolongations, the fundamental object is the closed dif-
ferential horizontal one-form µ = Λidx

i. One can define a deformed exterior
derivative dµ acting on forms of any degree by

dµα := dα + µ ∧ α . (31)
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It is immediate to check that d2
µ = 0; thus dµ allows to define a cohomology.

When µ = df , with f a C∞ function on B, we have

dµα = e−f d(efα) ;

in this sense the deformed exterior derivative dµ corresponds to (a generalization
of) a gauging of the standard exterior derivative d.

Similarly, one can consider a deformed Lie derivative Lµ. For X a vector
field, the deformed Lie derivative LµX is defined to act on forms α and on vector
fields Y by

LµX(α) = LXα + µ ∧ (X α) ,

LµX(Y ) = LX(Y ) − (Y µ) X .

Again, if µ = df these read

LµX(α) = e−f L(efX) (α) ,

LµX(Y ) = e−f L(efX)(Y ) ,

so this corresponds to (a generalization of) a gauging of the standard Lie deriva-
tive L.

Then, µ-prolonged vector fields can be characterized exactly in the same way
as standardly prolonged ones, at the exception that the deformed Lie derivative
plays the role of the standard one.

That is, we consider the contact forms ϑaJ = duaJ − uaJ,idxi and the Cartan
ideal Θ generated by them. The we have:

Proposition 2. A vector field Y on JnM is the µ-prolongation of the vector
field X in M if and only if
(a) it admits a projection on M , and this coincides with X;
(b) it satisfies

LµY (Θ) ⊆ Θ ,

i.e. for any a, J there are smooth functions AµKJ,β such that

LµY (ϑaJ) = AµKJβ ϑβK .

Proof. This is Theorem 4 in [31], and the reader is referred to there for a proof,
extensions, and a discussion. �

7 Twisted prolongations and coverings

The theory of coverings allows to provide a nonlocal interpretation of λ and
more generally µ symmetries; that is, a (local) µ symmetry for a given equation
corresponds to a standard non-local one for the same equation. This generalizes
a property holding also for standard symmetries [27, 28].
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The idea is the following. If the auxiliary equations (8) are solved for w as
a function of the x and u, say with

wµ = Θµ(x, u) , (32)

then we can restrict the vector field X̃, see (13), to the (x, u) space; this will be

X̃0 = ξi [x, u,Θ(x, u)]
∂

∂xi
+ ϕa [x, u,Θ(x, u)]

∂

∂ua
. (33)

But in general – albeit not always – the functions Θµ(x, u) will contain
integrals of x and u, as some trivial or less trivial example can easily show.

Example 3. Consider the equation

du/dx = f(x, u) = u ; (34)

we add to this the equation

dw/dx = h(x, u, w) = uw ; (35)

note that the latter is rewritten as dw/w = udx and hence solved by

w(x) = exp

[∫
u dx

]
. (36)

Consider now Lie-point symmetries for the system (34), (35); these will be in
the form (13). One of the symmetries of the system turns out to be11

X̃ = uw ∂u + w ∂w ;

by using (36), the restriction of this to the (x, u) space is

X̃0 =

(
u exp

[∫
u dx

])
∂u , (37)

i.e. a non-local vector field. �

Example 4. (See [28], Section 6.1.) Let us consider again the Burgers equation

ut = uxx + uux .

Then we have symmetries

Xα := (αu − 2αx) exp

[
−1

2

∫
udx

]
∂

∂u
,

with α = α(x, t) any solution to the heat equation αt = αxx.

11The action of this vector field is readily integrated to give w(s) = k1es, u(s) = k2 exp[w[s]];

the quantity ue−w is thus invariant under X̃.
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If we look for solutions to the Burgers equation which are invariant under
Xα, we have to solve for the system made of the Burgers equation and of the
condition Xα[u] = 0, i.e.

ut = uxx + uux

(αu − 2αx) exp

[
−1

2

∫
udx

]
= 0 .

The second equation requires u = 2αx/α; plugging this into the first one, we
obtain

2

α2
[αDx (αt − αxx) − αx (αt − αxx)] = 2 Dx

(
αt − αxx

α

)
.

In other words, the nonlocal symmetries Xα lead us to the Hopf-Cole transfor-
mation. �

7.1 λ-symmetries

Pretty much the same mechanism is at work also when one considers twisted
rather than standard symmetries. In particular the situation is fully understood
in the case of λ-symmetries (while no much work in the context of µ and σ-
symmetries appears in the literature, see however the next subsection); in this
context we have the following general result, which is Proposition 1 in [3].

Proposition 3. Consider a given smooth function λ = λ(x, u, ux); consider
moreover the ODE

∆0 :=
dku

dxk
= f(x, u, ..., u(k−1))

and its covering ∆̃ consisting of the system

dku

dxk
= f(x, u, ..., u(k−1))

dw

dx
= λ(x, u, ux) .

Then ∆ admits a λ-symmetry X if and only if ∆̃ admits a semi-classical symme-
try Y = ξ∂x+ϕ∂u+η∂w such that [∂w, Y ] = Y . Moreover, X is the projection to
the (x, u) space of the restriction of Y to the solution manifold for the auxiliary
equation dw/dx = λ(x, u, ux), i.e. to

w(x) =

∫
λ(x, u, ux) dx .
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Proof. For a detailed proof, the reader is referred to [3]. Here we give a sketch

of it. For a given equation ∆0, we consider the system ∆̃ consisting of it and
of ∆1 given by wx = λ(x, u, ux). Suppose then that some Lie-point symmetry

X = ξ(x, u, w)∂x + ϕ(x, u, w)∂u + η(x, u, w)∂w for ∆̃ has been determined, and
denote by Y the prolongation (of suitable order) of X. This means that

[Y (∆0)]{∆0=0,∆1=0} = 0 , [Y (∆1)]{∆0=0,∆1=0} = 0 .

On the other hand, it is clear that Y (∆0) only involves the prolongation of
X0 = ξ(x, u, w)∂x + ϕ(x, u, w)∂u, call it Y (0). This is of the form

Y (0) = ξ ∂x +
∑
k

ψ(k) ∂

∂u(k)
,

where ψ(0) = ϕ and the ψ(k) obey the prolongation formula

ψ(k+1) = Dxψ
(k) − u(k+1) Dxξ . (38)

It is convenient to rewrite the total derivative operator

Dx = ∂x +
∑
k

u(k+1) ∂

∂u(k)
+
∑
k

w(k+1) ∂

∂w(k)

in the form
Dx = D(0)

x + D(1)
x , (39)

having defined

D(0)
x = ∂x +

∑
k

u(k+1) ∂

∂u(k)
; D(1)

x =
∑
k

w(k+1) ∂

∂w(k)
. (40)

With this notation, we rewrite eq.(38) as

ψ(k+1) = D(0)
x ψ(k) − u(k+1) D(0)

x ξ + D(1)
x ψ(k) − u(k+1) D(1)

x ξ . (41)

If we assume that the condition [Y (∆1)]{∆0=0,∆1=0} = 0 is satisfied, the

other condition [Y (∆0)]{∆0=0,∆1=0} = 0 can be rewritten solving explicitly ∆1

as
[Y (∆0)]{∆0=0,w=

∫
λdx} = 0 .

This in turn can be written as[
Ŷ (∆0)

]
{∆0=0}

= 0 ,

where the vector field Ŷ is defined by restricting the vector field Y to

w =

∫
λ(x, u, ux) dx (42)
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and its differential consequences; note that under this restriction we get

D(1)
x = λ∂w + (Dxλ) ∂wx + ... =

∑
`

(D`
xλ)

∂

∂w(`)
. (43)

Thus if [∂w, Y ] = Y , it follows that ϕ and ξ are of the form

ϕ(x, u, w) = ew ϕ0(x, u) , ξ(x, u, w) = ew ξ0(x, u) , (44)

and then (41) reads just as the λ-prolongation formula. 12 �

The situation can be summarized in a diagram:

∆̃
sym−→ X̃

Pr0−→ Ỹycov

y∆1=0

y∆1=0

∆0
λ−sym−→ X(0) Prλ−→ Y (0)

Here sym (respectively, λ − sym) refers to the fact we determine a symmetry

(a λ-symmetry) of the equation, cov refers to the fact ∆̃ is a covering of ∆0,
and ∆1 = 0 refers to the restriction to the solution manifold for ∆1 (and its

differential consequences). Note here X̃ must be of the form (44).
We will illustrate this result by an example, also taken from [3], which we

consider in some detail.

Example 5. Consider the equation, or actually the class of equations,

∆ := uxx =
u2
x

u
+ [mg(x)ux + g′(x)u] um , (45)

where g(x) is a smooth function and m 6= 0 a real constant. This class of
equations was studied by Gonzalez-Lopez [25], and for general g(x) it has no
Lie-point symmetries. On the other hand, it was shown by Muriel and Romero
[33], and it is easily checked, that it always admits as λ-symmetry the vector
field

X = ∂u

provided one chooses

λ(x, u, ux) =
ux
u

+ mg(x)um .

In fact, the second λ-prolongation of X will be

Y = ∂u + ψ̂(1) ∂ux + ψ̂(2) ∂uxx ,

with the coefficients ψ(k) satisfying the λ-prolongation formula, which in this
case (ξ = 0) reads simply

ψ(k+1) = Dxψ
(k) + λψ(k) ,

12Note that the same condition [∂w, Y ] = Y also implies η(x, u, w) = ewη0(x, u).
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and of course with ψ(0) = 1. Thus we get

ψ(1) = λ , ψ(2) = Dxλ + λ2 .

Thus, by explicit computation,

Y [∆] =
uuxx − u2

x − um+1 [mg(x)ux + u g′(x)]

u2
;

substituting for uxx according to ∆ – i.e. according to eq.(45) – we get indeed

[Y [∆]]∆=0 = 0 .

When we consider the system ∆̃ made by (45) and by the auxiliary equation

wx = λ(x, u, ux) (46)

and look for standard Lie-point symmetries, say of the simplified form

X̃ = ϕ(x, u, w) ∂u + η(x, u, w) ∂w

it turns out that choosing

ϕ = ew , η = (m+ 1)
ew

u
,

or in other words

X̃ = ew
[
∂u +

m+ 1

u
∂w

]
,

we have a symmetry. This can be checked by standard computations.
On the other hand, (46) is solved by

w =

∫
λ(x, u, ux) dx = log(u) + m

∫
u(x) g(x) dx ; (47)

thus the vector field X̃ restricted to the solution to (46) and projected to the
(x, u) space reads

X̂ = exp [λ dx] ∂u ,

i.e. we have a non-local vector field.
Now if we look at the second prolongation of X̃, we have

Ỹ = ew
[
∂

∂u
+ wx

∂

∂ux
+ (w2

x + wxx)
∂

∂uxx

]
+ ew

(m+ 1)

u

[
∂

∂w
+

uwx − ux
u

∂

∂wx

+
2u2

x − 2uuxwx − uuxx + u2(w2
x + wxx)

u2

∂

∂wxx

]
.
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When we restrict to solutions to (46), i.e. substitute for w and its derivatives
according to (47), and project to the (x, u, ux, uxx) space – i.e. to J2M – we
get

Ỹ =

(
exp

[∫
λdx

]) [
∂

∂u
+ λ

∂

∂ux
+ (λ2 +Dxλ)

∂

∂uxx

]
. (48)

By construction, this is tangent to the solution manifold for ∆, Ỹ : S∆ → TS∆.
But if this is the case, the same also applies to any vector field which is collinear
to Ỹ , in particular to

Ŷ = exp

[
−
∫
λ dx

]
Ŷ

=
∂

∂u
+ λ

∂

∂ux
+ (λ2 +Dxλ)

∂

∂uxx
. (49)

This is the λ-prolongation of the vector field X̂ = ∂u. �

7.2 µ-symmetries

The discussion given above for λ-symmetries can be extended to µ-symmetries,
provided we only consider vertical vector fields, both in the (x, u) space and in
the augmented (x, u, w) one.

Thus to a PDE or system of PDEs ∆0 of order n

∆0 : F `(x, u, ..., u(n)) = 0 , ` = 1, ..., L (50)

for u = (u1, ..., up) depending on the independent variables x = (x1, ..., xq) we
associate the auxiliary equations for w = (w1, ..., wm) given by

∆β
i : wβi = hβi (x, u, w, ux) , (51)

where the functions hβi satisfy the compatibility condition

Dih
β
j = Djh

β
i (52)

for all pairs i, j = 1, ..., q and for all µ = 1, ...,m. Note that now and in the
following Di denotes the total derivative w.r.t. xi in the augmented space, i.e.
taking care of both the u and the w variables.

We will then consider the system ∆̃ made of the original equation ∆0 and
of the auxiliary equations ∆β

i . When looking for Lie-point symmetries of ∆̃, we
will only be considering vertical vector fields, i.e. vector fields of the form

X = φa(x, u, w)
∂

∂ua
+ ηβ(x, u, w)

∂

∂wβ
. (53)
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In order to apply this to ∆̃, it suffice to consider prolongation to order n in the
u derivatives but only to order one in the w derivatives; we will write this as

Y = Ψa
J

∂

∂uaJ
+ χβi

∂

∂wβi
, (54)

where J is a multi-index of order |J | ≤ n, the index i runs on 1, ..., q, and
sum over repeated indices and multi-indices is understood. Moreover we set
Ψa

0 = Φa, χβ0 = ηβ . We will also write, for later reference, the restriction of
Y to the JnM bundle (with M = B × U , and x ∈ B, u ∈ U the manifolds in
which x and u take values) as

Y0 = Ψa
J

∂

∂uaJ
.

Suppose that we are able to determine such a vector field which is a symmetry
of ∆̃ and moreover such that

φa(x, u, w) = Gab(w) ϕb(x, u) . (55)

Then the coefficients in the first prolongation read

Ψa
i = Diφ

a = (DiG
a
b )ϕb + Gab (Diϕ

b) .

As the matrix G only depends on w, while the vector ϕ only depends on (x, u)
we can use the decomposition (39), (40), and rewrite this – in vector notation
for ease of writing – as

Ψi = G (D
(0)
i ϕ) + G[G−1 (D

(1)
i G)]ϕ = G

[
(D

(0)
i ϕ) + (G−1DiG)ϕ

]
. (56)

Defining the matrices Mi as Mi := G−1
(
D

(1)
i G

)
, i.e. as

(Mi)
a
b = [G−1(w)]ac

[
wβi

∂Gab(w)

∂wβ

]
,

this is also rewritten as

Ψi = G
[
(D

(0)
i ϕ) +Mi ϕ

]
. (57)

Let us now take the restriction of this to the set of solutions to the auxiliary
equations ∆β

i . Here wβi = hβi (x, u, w), and the wβ themselves are written in
terms of the (x, u) variables – in general through expressions containing integrals

of the ua. We will also denote the restrictions of G and M to ∆β
i = 0 as

Ĝ := [G]∆β
i =0 , Λi := [Mi]∆β

i =0 . (58)

Note that the Λi satisfy (21) by construction.
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With this notation, let us consider the restriction of Y to the solutions of
∆β
i and let us project it on the JnM bundle; call the resulting vector field Ŷ .

We then have

Ŷ = ψ̂aJ
∂

∂uaJ
,

where the coefficients ψ̂aJ satisfy ψ̂a0 = φ̂a = Ĝabϕ
b and obey the prolongation

formula
ψ̂aJ,i = Ĝab

[
D

(0)
i ψ̂bJ + (Λi)

a
b ψ̂

b
J

]
. (59)

Thus, if we consider the vector field

Ẑ = Ĝ−1 Ŷ = (Ĝ−1)ab ψ̂
b
J

∂

∂uaJ
,

then this is the µ-prolongation of

X0 = ϕa(x, u) (∂/∂ua) (60)

for the horizontal one-form

µ = Λi(x, u, ux) dxi . (61)

In this case we could summarize our discussion in the form of a diagram
similar to the one given above for λ-symmetries, i.e.

∆̃
sym−→ X̃

Pr0−→ Ỹycov

y∆β
i =0

y∆β
i =0

∆0
µ−sym−→ X(0) Prµ−→ Y (0)

where ∆β
i = 0 refers to the restriction to the solution manifold for the whole

set of auxiliary equations ∆β
i , and we have to require that the coefficient of

the (x, u) variables in the vector field X are as above; note that we have not
discussed the functional form of the ηβ coefficients.13

It is maybe convenient to summarize our discussion as a formal statement
(the previous discussion gives a proof of it).

Proposition 4. Let the system made of eqs. (50) and (51) – with functions hβi
satisfying eq.(52) – admit a Lie-point symmetry of the form (53), (55). Then
the equation (50) admits the µ-symmetry X0 eq.(60) with µ provided by eq.(61).

8 Conclusions

We have discussed twisted symmetries; these were introduced as a practical tool
to obtain (generalized) symmetry-reduction and symmetry-invariant solutions

13Our formulas can be slightly simplified if G(w) = exp[g(w)]; we leave this simplification
to the reader.
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for differential equations, but here we focused on their geometrical interpretation
and meaning.

In particular we considered three different approaches to them, looking at
them in different ways:

(a) consider these as standard prolongation under a local gauge transforma-
tion, which yields the deformed prolongation operator;

(b) consider these as prolongations obtained applying the standard prolonga-
tion operator but with gauge-deformed (exterior and Lie) derivatives;

(c) consider these as the image of standard prolongations in a covering space
when projected to the original one.

It is quite clear that these different approaches are related to each other, and
we will now sketchily discuss such relations; we hope to provide a more detailed
discussion in a forthcoming work.

The approaches (a) and (b) are clearly and directly related, and are both
based on considering gauge transformations. In the first case this is acting on
vector fields which are prolonged in a standard way, i.e. on prolongation op-
eration based on the requirement the Lie derivative of prolonged vector fields
preserves the (Cartan) contact structure in JnM , while in the second case the
gauging is applied to the Lie derivative – and to the exterior derivatives ap-
pearing in the contact forms – themselves. Thus we are in a way considering
“active” and “passive” gauging.

The relation with the approach by covering is less immediate. As we have
seen, covering is based on considering new degrees of freedom (and correspond-
ing auxiliary variables wβ), and new equations for this; the vector fields are
prolonged in the standard way in the augmented phase space, but projecting
this prolongation, or actually its restriction to the solutions of the auxiliary
equations – to the original space and its prolongations results in a vector field
which is equivalent to a vector field prolonged by the λ- or µ-prolongation for-
mula.

Note that behind all of these approaches lies the basic remark – due orig-
inally to Pucci and Saccomandi [50] – that twisted prolongations are vector
field collinear to standard prolongations (of different vector fields), which allows
them to preserve the contact structure. This is essentially due to the very basic
fact that in this only the integral curves of vector fields are relevant, and not
the way the flow generated by the vector field itself runs along them.

In concrete application, one or the other of the different approaches reviewed
here can be more convenient: in several cases, in particular if analyzing equa-
tions stemming from Physics, the gauge approach can yield more transparent
results; on the other hand, the approach through the theory of covering makes
a direct connection with non-local symmetries, which would be quite artificial
in the gauge formalism.
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