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A main scientific output of the LISA Pathfinder mission is to provide a noise model that can be
extended to the future gravitational wave observatory, LISA. The success of the mission depends
thus upon a deep understanding of the instrument, especially the ability to correctly determine the
parameters of the underlying noise model. In this work we estimate the parameters of a simplified
model of the LISA Technology Package (LTP) instrument. We describe the LTP by means of
a closed-loop model that is used to generate the data, both injected signals and noise. Then,
parameters are estimated using a Bayesian framework and it is shown that this method reaches
the optimal attainable error, the Cramér-Rao bound. We also address an important issue for the
mission: how to efficiently combine the results of different experiments to obtain a unique set of
parameters describing the instrument.

I. INTRODUCTION

LISA Pathfinder [1] is an ESA mission, with some
NASA contributions, that aims at testing key technolo-
gies for the future space gravitational wave observa-
tory, LISA [2]. The main aim is to demonstrate the
ability to put a test mass in to free-fall at a level of
3 × 10−14 ms−2/

√
Hz at 1 mHz. The LISA Technology

Package (LTP) is the main instrument on-board LISA
Pathfinder. It comprises two test masses enclosed in in-
ertial sensors which are in turn housed inside individ-
ual vacuum tanks, composing the so called Gravitational
Reference Sensor [3]. The two tanks are then mounted
to a support structure which also holds an optical bench
between the tanks. The optical bench and the associ-
ated interferometry are part of the Optical Metrology
System [4]. In order to reach the goal stated above, the
full LTP must be characterized and optimized. This will
involve developing a full parametric noise model of the
instrument, which will be improved over the course of the
mission.

The LISA Pathfinder mission comprises a series of ex-
periments. Many of the experiments aim to reduce the
noise in the system so as to produce the quietest residual
acceleration measurement possible. Other experiments
will aim to characterize the instrument. This typically
involves determining the various parameters that go into
the physical model of the instrument. Clearly, a good
model is needed to be able to target and reduce par-
ticular noise sources, whereas reducing the various noise
sources leads to a more sensitive instrument. Various
experiments will be repeated under different conditions,
and as the noise is reduced, we would expect that the de-
termination of the physical parameters will become more
and more accurate. One essential aspect of this multiple-
experiment mission is the ability to include the results
from analyzing the previous experiments in further ex-
periments, and in particular, it will be necessary to com-

bine the various experiments to gain the best knowledge
about the particular physical parameters. The analysis
procedures and software need therefore to remain flexible
in order to react to the results of the experiments as they
are performed. This paper presents a Bayesian analysis
for determining particular physical parameters of the sys-
tem. Using a Bayesian framework leads to a natural way
of combining a series of experiments. The result of one
analysis becomes prior information in subsequent analy-
ses. The analysis is presented for a reduced set of physical
parameters in the context of the Mock Data Challenges
(MDC) [5] that are being carried out during the develop-
ment of the data analysis procedures for the mission. In
MDC1 [6] the focus was on developing a simple model of
the system, together with establishing routines for cal-
ibrating the measured test mass displacements back to
equivalent residual external test mass accelerations. In
MDC2, the focus shifts to parameter estimation. The
analysis and procedures presented in this paper represent
one of the methods being developed for the mission.

II. THE SECOND LTP MOCK DATA
CHALLENGE

The aim of the second MDC was to develop and test
reliable methods to accurately estimate the parameters
of the LTP noise model during flight operations. In order
to focus on methods and not on model complexity, it was
decided to keep a very similar model as the one analyzed
during the first MDC. The basic difference regarding the
previous challenge is that now 5 parameters are consid-
ered as degrees-of-freedom of the system, which need to
be determined by stimulating the system using injected
signals. It is worth recalling that the first MDC did not
include any signal injection in the data, since it was de-
signed as a test of the calibration of displacement noise
to acceleration noise, and therefore only a noise measure-
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FIG. 1. The LTP MDC2 model. Left: Simplified scheme of the LTP instrument. Only two out of the four heterodyne
interferometers are represented here: the one measuring spacecraft to first test mass distance, ox1, and the one measuring
test mass to test mass distance, o∆x. See text for a description of terms appearing in the picture. Right: The previous is
described as a control loop: the boxes describe the interferometer (IFO), controllers and dynamics of the test masses. The
circles represent noise contributions, diamonds are signal injection points and the triangles denote cross-couplings between the
first (ox1) and second channel (o∆x).

ment (signal free) was simulated. The current challenge
is therefore a natural extension to the first one.

It is important to notice that, due to the nature of the
LISA Pathfinder mission, our description of the system
necessarily needs to deal with the closed-loop dynamics
of the spacecraft and test masses together.

The description that we show in Section II A is there-
fore a closed-loop system where we take into account the
feedback between different components and show where
parameters and noise contributions enter in the non-
linear model that is described in terms of transfer func-
tions in the frequency domain. We want to recall that
this approach differs from the one used to model LISA to
the date. The data generators that are providing data in
the LISA Mock Data Challenges [7–9] are focused on the
geometry of the spacecraft configuration, since the main
concern is, in that case, the suppression of frequency
noise due to the unequal arms. But, on the other hand,
they consider additive noise sources inside each space-
craft. A second important remark is that LISA genera-
tors model noise sources as white gaussian contributions.
This is clearly unrealistic and could be particularly mis-
leading in the relevant region around 1 mHz, since each
of the noise sources will contribute with a f−p (p ' 1)
power spectrum that will set the low frequency perfor-
mance of LISA. LTP is designed to study that region
and therefore our model needs to describe these low fre-
quency contributions in more detail. The noise models
and the parameters used are described in Section II B.
The description provided in this paper will complement
the one already existing within the LISA community and
will facilitate the interaction between both communities
to a common goal, which is a realistic understanding of
the LISA instrument.

In terms of implementation, it is worth mentioning

that the current challenge is completely implemented as
LTPDA tools [5], which means that any user of this tool
has the means available to produce LTP-like data (as de-
scribed in the following section) by executing a relatively
simple MATLAB [10] script.

A. Dynamical model

When compared with other space missions, the LTP
is a very flexible instrument in terms of the possible op-
erational scenarios. It can be configured to use different
combinations of the available sensors onboard, either op-
tical or capacitive, with the aim of performing different
geodesic measurements, or even to work as an accelerom-
eter. The aim of the second MDC was not to cover all of
these possibilities but to analyze the instrument behav-
ior for a fixed operating mode: the main science mode
— described as M3 mode in [11]. Moreover, this control
scheme is reduced in this analysis to the one-dimensional
case in order to simplify the model and focus on the anal-
ysis. In this simplified model, the x position of both test
masses is controlled by means of the optical readouts.
A first interferometer measures the relative distance be-
tween test mass 1 and the spacecraft, x1. This is a rel-
atively noisy measurement since the noise of the space-
craft’s micro-Newton thrusters appears directly in the
measurement. A second interferometer measures the rel-
ative distance between both free falling test masses. This
channel, that we call x∆ in the rest of this paper, will
be the one giving an unprecedently quiet measurement
of the differential acceleration (or displacement) between
two test masses, since the contribution of the thruster
noise effectively cancels out [12].

The model of the LTP dynamics control loop is shown
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in Figure 1. The right panel of this figure shows two
control loops for the two measurement channels that we
just described: x1 and x∆. This schematic representation
of the closed loop system can be analytically expressed
in terms of the following set of equations [13]

D · ~q = ~g,

~g = −C · (~o+ ~oi)− ~gn, (1)

~o = S · ~q + ~on,

where D is the dynamical matrix, C is the controller, and
S stands for the sensing matrix (the interferometer in our
case), i.e., the matrix translating the position of a test
mass, ~q, into the interferometer readout, ~o. Subindex n
stands for noise quantities, either sensing noise (~on) or
force noise (~gn) and subindex i stands for the injected
signals (~oi). All of these are 2-dimensional vectors with
components referring to the x1 and x∆ channels respec-
tively,

~q =

(
x1

x∆

)
, ~o =

(
ox1

ox∆

)
,

~oi =

(
oi1
oi∆

)
, ~on =

(
on1

on∆

)
, (2)

~gn =

(
gn1 − gN
gn2 − gn1

)
.

The last equation shows how any noisy force applied to
the spacecraft (gN ) is only measured in the first channel
(if there were no cross terms). On the other hand, the
differential channel is sensitive to the difference of force
noise applied to the first and the second test mass, g1

and g2 respectively.
The matrices read as

D =

(
s2 + ω2

1 0
ω2

2 − ω2
1 s2 + ω2

2

)
,

C =

(
Gdf Hdf 0

0 GsusHsus

)
, (3)

S =

(
1 0
δ21 1

)
,

where ω1 and ω2 are the stiffness — the steady force gra-
dient across the test mass housing per unit mass [12] —
coupling the motion of each test mass to the motion of the
spacecraft; Gdf and Gsus are constant factors acting as
calibration factors of the controller, Hdf and Hsus. These
are the control laws of the loop and will be considered
known transfer functions in the following; δ21 is the in-
terferometer cross-coupling, a small term accounting for
the imperfection of the interferometer that will produce a
spurious signal in the differential channel when only the
first test mass moves. The interferometer has no cou-
pling going from o∆ to o1 and therefore we set δ12 = 0 in
the sensing matrix. The previous are the 5 parameters
that we will consider in the following discussion, the ones
characterizing the dynamics of the instrument.

TABLE I. Parameters for the LTP MDC2 model

Dynamical Parameters

Parameter Value

Gdf 0.8

Gsus 1.15

ω2
1 −11× 10−7

ω2
2 −22× 10−7

δ21 1.35× 10−4

Noise Parameters

Parameter on1/on∆ gn1/gn2 gN

p1 3.6× 10−12 7× 10−15 2.5× 10−10

p2 10× 10−3 5× 10−3 12× 10−3

p3 4.2 3 3.8

p4 1.8× 10−3 4× 10−4 1× 10−3

p5 8 8 8

The leading diagonal terms in Equation (3) describe
the dynamics of each channel (for example, s2 + ω2

1 is
Newton’s law in the Laplace domain for the first test
mass, with ω1 being the test mass stiffness), and the
control law (for example, Gdf Hdf stands for the drag-
free transfer function controller on the first test mass,
multiplied by a constant calibration factor, Gdf). The
off-diagonal terms are the cross-couplings between the
two channels appearing as triangles in Figure 1. From
Equation (3) we can compute the response of the inter-
ferometer once all the dynamical and noise parameters
are given as

~o = (D · S−1 + C)−1(−C~oi + ~gn + D · S−1~on). (4)

This equation describes the interferometer output and
will be the variable that we will use to evaluate the in-
terferometer response. It may be useful to express the
nominal output as a signal and two noise terms:

~o = Gs(Θ)~oi + Gno(Θ)~on + Gng(Θ)~gn, (5)

where Θ = {Gdf , Gdf , ω
2
1 , ω

2
2 , δ21} are the unknown model

parameters we are interested in determining.
Our model can be thought of as a first term which fil-

ters the input signal (~oi) and two further terms which
filter the noise. It must be stated that, since our fi-
nal aim is to characterize the noise model, the noise
terms also contain information about our parameters.
But, since we will be working in a high signal-to-noise
ratio (SNR) regime, we will not consider this depen-
dence in our analysis and we will further simplify the
model with the approximations Gno(ω,Θ) ≈ Gno(ω)
and Gng(ω,Θ) ≈ Gng(ω). This allows us to rewrite
Equation (5) as

~o = Gs(Θ)~oi + ~n, (6)

where ~n now represents the overall noise of the instru-
ment. The first term then contains all the model depen-
dence that we will be able to test with our experiments.
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The transfer function in this formulation now has the
following components

G11
s =

Gdf Hdf(ω)

ω2
1 − ω2 +Gdf Hdf(ω)

, (7)

G12
s = 0, (8)

G21
s =

GdfHdf

(
ω2

2 − ω2
1 + δ21

(
ω2 − ω2

2

))
(ω2

1 − ω2 +GdfHdf) (ω2
2 − ω2 +GlfsHlfs)

, (9)

G22
s =

GlfsHlfs(ω)

ω2
2 − ω2 +GlfsHlfs(ω)

, (10)

where we can see that by injecting and measuring in the
same channel (i.e., testing the diagonal terms), we are
able to determine either {Gdf , ω

2
1} or {Gsus, ω

2
2}, and it

is through the non-diagonal (cross-coupling) term that
we can determine the δ21 parameter and the difference
between stiffnesses, ω2

2 − ω2
1 . The experiments in this

MDC were designed to test these possible combinations
of injected signals, as described in the following.

B. Model parameters

Our model is defined by a total of 30 parameters, which
can be divided into two groups: noise parameters and dy-
namical parameters. The first ones are those ones used to
set the noise shapes of the individual noise contributions
— force noise ~gn and interferometer read-out noise ~on in
Equation (5) — that will set the final instrument noise
level. Each contribution is described as

S(ω) = p2
1

1 +
1(
ω

2πp2

)p3 +
1(
ω

2πp4

)p5
1/2

, (11)

and therefore 5 parameters are required for each of them,
for a total of 25 to describe all noise contributions. We
need to add to these the 5 parameters that characterize
the joint dynamical behavior of the spacecraft and test
masses. Only the latter will be the parameters that we
will be interested in recovering from the data in this chal-
lenge. As stated above these are: stiffness for each test
mass (ω2

1 , ω
2
2), calibration for each controller (Gdf , Gsus)

and interferometer cross-coupling (δ21).
Table I contains all numerical values used in the second

Mock Data Challenge, and therefore fully characterizes
the model. Although the model allows for different noise
levels for x1 and x∆ interferometer noise, we did not use
this degree of freedom and set both interferometers to
behave equally. The same applies to the force noise acting
on both test masses.

C. Experiments

Three experiments were proposed for MDC2. These
were originally motivated by first studies about the sen-
sitivity attainable by injected signals during the mis-
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FIG. 2. Amplitude spectral density of a noise realization of
the LTP MDC2 noise model compared to analytical curves.
We compare the noise of the first channel (Sx1), the second
channel (Sx∆) and the absolute value of the cross-spectra be-
tween both (Sx1:x∆) .

sion [13] and correspond to a frequency sweep in the mea-
surement bandwidth at four different frequencies. Our
experiments in MDC2 consider only the possibility of in-
jected signals as simulated interferometric signals, the
so-called interferometric bias, which we have labelled in
Equation (5) and in Figure 1 as ~oi. LISA Pathfinder
will allow other kinds of injected signals, for instance,
forces applied to the spacecraft via the thrusters or forces
directly applied to the test masses via the capacitive
sensors but, as stated above, it is not the aim of this
work to explore all capabilities of the mission. In that
sense, extending the analysis to include all possible injec-
tion signals is one of the aims of the forthcoming LISA
Pathfinder MDCs. The three proposed experiments for
this challenge were the following:

Experiment 1: Two signals are injected independently
into the first and second channel. Each signal is
a sequence of sinusoids with different amplitudes,
frequencies and duration, all of them known to the
data analysis team. This experiment is the richer
in terms of frequencies injected to the system, and
the one with best expected parameter estimates, as
we show in the following section.

Experiment 2: A signal is injected in the first chan-
nel and both test mass stiffnesses are set to the
same value, different than the value for the two
other experiments. This configuration represents
the matched stiffness configuration in the real LISA
Pathfinder satellite. This state can be achieved
by commanding an equal bias voltage on the elec-
trodes of the inertial sensors at a level which dom-
inates all other stiffness effects thus resulting in an
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FIG. 3. The three MDC2 experiments. From left to right: scheme of injected signal, input signal and output signal. From top
to bottom: experiment 1, 2 and 3. Only x12 output is shown for experiments 2 and 3, the response of the first channel to the
injected signal is similar to the one shown in experiment 1.

equal coupling between the two test masses and
the spacecraft. This scheme is particularly useful
since it would ideally decouple any external force
from the differential measurement. However, in our
simplified model there is already a second cross-
term, the interferometer cross-coupling, δ21, mix-
ing both channels — see Equation (9). Being the
only remaining cross-coupling in this experiment,
this parameter should therefore be obtained with
the greatest accuracy when analyzing this data set.

Experiment 3: The last experiment again applies only
one signal to the first channel but without match-
ing the stiffness for both test masses. This exper-

iment tests the ability to recover the same param-
eters that we determine in Experiment 1, but by
only injecting signals into the first channel.

The data set in MDC2 also included a run without
any injected signal from where the instrument perfor-
mance could be evaluated. A typical noise realisation for
this model is shown in Figure 2 whereas the three MDC2
experiments are represented in Figure 3, all of them gen-
erated using LTPDA methods. The concept behind the
data generation process is to translate the transfer func-
tions appearing in Equation (5) into digital filters, and
then use those filters to translate the input signal into the
measured output. Since the measured data is a combi-
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nation of signal and noise, the data generation procedure
is consequently split into two branches that are added at
the end. The generation of the signal part is straightfor-
ward since it only requires the filtering of a deterministic
signal. In contrast, the noise part requires the use of
digital filters to color white-noise and to do it in such a
way that the noise cross-correlation properties between
the two channels are correctly reproduced. A detailed
description of this process can be found in [14].

III. DATA ANALYSIS

A. Bayesian estimation

We would now like to infer unknown parameters from
the simulated data. To this end we need to derive the
posterior probability distribution of the parameters, that
is, the conditional probability distribution of the param-
eters for the given data at hand. The posterior distribu-
tion expresses the information about the parameters by
assigning probabilities across parameter space, and by
that allows us to derive the most likely values and their
uncertainties [15, 16]. The posterior distribution is given
by Bayes’ theorem, and it depends on the data as well as
any other prior information I:

P(Θ|D, I) =
P(Θ|I)× P(D|Θ, I)

P(D|I)
∝ P(Θ|I)×P(D|Θ, I).

(12)
The prior probability distribution P(Θ|I) expresses in-
formation we may have about the parameter values
(in addition to the data D), while the likelihood func-
tion P(D|Θ, I) describes the probabilistic relationship be-
tween parameters and the (noisy) measurements. The ev-
idence P(D|I) is usually not of concern for parameter es-
timation purposes and constitutes a normalizing constant
here. In this work we will assume uniform prior distribu-
tions for all parameters, i.e., the prior density P(Θ|I) is
constant across the allowed region as defined in Table I.

Given the simplified model in Equation (6) we start
by assuming that the noise term ~n is Gaussian. The
noise in each of the two output channels is characterized
by the (known) one-sided power spectral density func-
tions Sx1(f) and Sx∆(f), respectively. In addition, the
noise is assumed to be correlated between the two out-
puts, which is expressed through the cross spectral den-
sity Sx1:x∆(f). Due to the colored noise it will be con-
venient to express the likelihood function in terms of the
Fourier transformed data. The likelihood function then
is given by

p(D|Θ, I) =
[
(2π)N/2 det Σ

]−1/2

(13)

× exp

[
−1

2

(
~o−Gs(Θ)~oi

)T
Σ−1

(
~o−Gs(Θ)~oi

)]
,

so that (up to a multiplicative factor) the logarithmic
likelihood is proportional to the quadratic form

log
(
p(D|Θ, I)

)
∝ − 1

2

(
~o−Gs(Θ)~oi

)T
Σ−1

(
~o−Gs(Θ)~oi

)
,

(14)
where Σ is the covariance matrix of the (Fourier domain)
noise term ~n. The covariance matrix entries are then
defined by the spectral and cross-spectral density values
corresponding to the Fourier frequencies. Most of Σ’s
entries are zero (since only the terms corresponding to the
same Fourier frequency are correlated) and the quadratic
form may be rearranged so that Σ is of a block-diagonal
form and the likelihood expression simplifies to a sum
over the blocks of correlated terms at each frequency bin:

log
(
p(D|Θ, I)

)
∝ − 1

2

∑
j

Re
(
rj
T Σ−1

j rj
)
, (15)

where j = 0, . . . , N/2 is an index over the Fourier fre-
quencies fj , and rj and Σj denote the two (complex-
valued) residual terms and corresponding covariance ma-
trix at frequency fj :

rj =

( [
ox1 − (G11(Θ) oi1 +G12(Θ) oi∆)

]
(fj)[

ox∆ − (G21(Θ) oi1 +G22(Θ) oi∆)
]
(fj)

)
,

Σj =
N

4∆t

(
Sx1(fj) Sx1:x∆(fj)

∗

Sx1:x∆(fj) Sx∆(fj)

)
. (16)

B. Optimal parameter estimation errors

In order to get an idea of what kind of information
the simulated experiments will provide, we will use the
Fisher information formalism to estimate the measure-
ment errors to be expected from the different experimen-
tal settings. The Fisher information and the correspond-
ing Cramér-Rao bound (CRB) provide an estimate of the
measurement uncertainties to be expected in the limit of
a large signal-to-noise ratio (SNR) [17]. For an unbiased
estimate of Θ, the CRB can be expressed as

cov(Θ) ≥ J−1(Θ), (17)

where J(Θ) is the Fisher information matrix. For our
particular case it will shown to be useful to use the
Cramér-Rao bound expressed as [18],
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[J(Θ)]lm =
∑
j,k

[
1

2π

∫ ∞
−∞

dω
1

Sjk(ω,Θ)

∂oj(ω,Θ)

∂θl

∂ok(ω,Θ)

∂θm
+

T

4π

∫ ∞
−∞

dω
1

S2
jk(ω,Θ)

∂Sjk(ω,Θ)

∂θl

∂Sjk(ω,Θ)

∂θm

]
(18)

where we sum over the two channels; ox1 and ox∆ being
the two components of the nominal output, Sjk(ω,Θ)
the components of the cross-spectrum matrix and T the
integration time. We are considering here the parametric
dependence of the noise terms — Equation (5). Although
we will drop it in the next step, we want to explicitly state
that term since it is usually not considered in the Fisher
matrix analysis among the gravitational wave commu-
nity [17], but it may turn out to be relevant in future
analysis since the noise model characterization is the fi-
nal purpose of the LTP mock data challenges. However,
for this first application, and to avoid cumbersome equa-
tions, we decided not to include those terms considering
that they will not introduce any relevant information in
the high SNR regime where we are working. Switching
therefore to Equation (6) and substituting into Equa-
tion (18) leads to

[J(Θ)]lm (19)

=
∑
j,k

oi,j o
∗
i,k

2π

∫ ∞
−∞

dω
1

Sjk(ω)

∂Gjk(Θ)

∂θl

∂Gjk(Θ)

∂θm
,

where now oi,1 and oi,∆ are the two components of the
input signal and Gjk(Θ) the components of the transfer
function. We will use Equation (19) in the following to
evaluate the CRB in each experiment. It is important to
keep in mind that the three experiments analyzed here
contain different configurations of the instrument, mean-
ing that both the transfer function elements and the sig-
nals are changing in each experiment.

TABLE II. Crámer-Rao bound. Values between parenthesis
expressed in relative parts per thousand (h)

Parameter Exp. 1 Exp. 2 Exp. 3

σGdf 2× 10−5 (0.02) 5× 10−5 (0.06) 2× 10−4 (0.2)

σGsus 3× 10−7 (0.0002) 3× 10−3 (3) 3× 10−4 (0.3)

σω1 6× 10−10 (0.5) 3× 10−6 (1000) 9× 10−8 (80)

σω2 3× 10−10 (0.1) 3× 10−6 (1000) 9× 10−8 (40)

σδ21 6× 10−8 (0.5) 4× 10−8 (0.2) 1× 10−7 (0.9)

σ∆ω 5× 10−10 (0.4) 6× 10−10 (−) 3× 10−10 (0.3)

Table II summarizes the optimal error estimates that
the data analysis should return. The last column refers
to the achievable standard deviation in the difference be-
tween squared stiffnesses, ∆ω2 = ω2

2 − ω2
1 . This will be

only indirectly estimated by the analysis, but we added it
to the table, firstly, because the cross-coupling between
both channels depends directly on this difference, but
also because the error in the estimation of the stiffnesses
difference depends on the non-diagonal terms of the co-

variance matrix. This quantity adds then some more in-
formation not contained in the other parameters, which
are extracted purely from the diagonal terms. The σ∆ω

error is computed as

σ2
∆ω = σ2

ω1
+ σ2

ω2
− 2σω1,ω2

, (20)

where σ2
ω1

and σ2
ω1

are the variances of the stiffness
squared of test mass 1 and test mass 2, and σω1,ω2 is
the covariance term containing the correlation between
both stiffnesses. A remarkable result from this analy-
sis is that a single experiment injecting a signal in both
channels (experiment 1) is enough to determine all pa-
rameters with high precision. In fact, this experiment
is preferable to the other experiments which only inject
signals in the x1 channel. Only the matched stiffness
experiment (experiment 2) gives a slightly better esti-
mation of the interferometer cross-coupling. Precision in
this parameter is gained however at expenses of increas-
ing the uncertainty in the determination of the absolute
value of the stiffnesses, reaching in this case 100 %. In
principle, if we take into account our simplified model,
experiment 3 would be redundant, not adding more in-
formation (apart from statistical averaging) than what
we get from experiments 1 and 2.

In order to give some more insight in what refers the
difference between experiments we provide in Table III
the correlation matrices as computed with the previous
formalism. These results complement the ones in Table
II, since the diagonal terms of the latter correspond to the
values reported in the former. Comparison between cor-
relation matrices show how experiment 1 is disentangling
the different parameteres dependences more efficiently.
In particular, it is the only experiment which is able to
differentiate the contribution of the two stiffnesses. The
reason for that being that it is the only experiment with
a signal injected in the differential channel.

C. Combining the results of experiments

1. The information propagation problem

As opposed to the usual application of Bayesian pa-
rameter estimation in LISA, where a single set of data is
used to determine the parameters of a multiplicity of sys-
tems, i.e., astrophysical sources, in our case we use differ-
ent sets of data (experiments) to characterize a unique
system, the LTP experiment. Thus, once we have ob-
tained the parameter estimates for each experiment we
still need to go further to achieve our final goal. Since
each experiment can be adding valuable, but partial, in-
formation about the instrument, we need to find a scheme
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TABLE III. Correlation matrices for MDC2 experiments

Gdf Gsus ω2
1 ω2

2 δ21

Experiment 1

Gdf 1 0.0003 -0.1 -0.001 -0.2

Gsus 0.0003 1 -0.3 -0.5 -0.001

ω2
1 -0.1 -0.3 1 0.5 0.5

ω2
2 -0.001 -0.5 0.5 1 0.005

δ21 -0.2 -0.001 0.5 0.005 1

Experiment 2

Gdf 1 0.4 -0.6 -0.6 0.2

Gsus 0.4 1 -0.7 -0.7 0.3

ω2
1 -0.6 -0.7 1 ≈ 1 -0.4

ω2
2 -0.6 -0.7 ≈ 1 1 -0.4

δ21 0.2 0.3 -0.4 -0.4 1

Experiment 3

Gdf 1 0.03 -0.02 -0.02 0.04

Gsus 0.03 1 -0.8 -0.8 0.3

ω2
1 -0.02 -0.8 1 ≈ 1 -0.09

ω2
2 -0.02 -0.8 ≈ 1 1 -0.09

δ21 0.04 0.3 -0.09 -0.09 1

that allows us to include all the information in a final set
of parameters.

The efficient combination of results is also an impor-
tant problem to solve in terms of mission operations. It
should be noted that the LISA Pathfinder mission will
be a space laboratory with approximately 100 channels
being sampled and more than 50 parameters defining its
performance. It will therefore be crucial to combine the
results from one experiment with the ones following. For
instance, we may be interested in using the determination
of the stiffness to calibrate the thrusters in a forthcom-
ing experiment. Given the limited mission time and the
high numbers of experiments to be performed, the need
for a clear combination scheme is evident. We explore
in the following how to take advantage of the posterior
distribution to that end.

2. The general case

a. Identical parameter sets First consider the case
where the parameter sets are identical for the data sets
to be combined (as e.g. in Experiments 1 and 3 above).
Suppose we have a parameter vector Θ and two data sets
D1 and D2. Similar to the general case in Equation (12),
the posterior distribution P(Θ|D1, D2, I) is then given by

P(Θ|D1, D2, I) ∝

prior︷ ︸︸ ︷ likelihood︷ ︸︸ ︷
P(Θ|I)×P(D1|Θ, I)︸ ︷︷ ︸

prior

×P(D2|Θ, I)︸ ︷︷ ︸
likelihood

, (21)

where the same expression may be motivated by either
taking the likelihood to be the product of the individual

experiments’ likelihoods or by analyzing the experiments
one after the other and using the posterior from the first
experiment as the prior for the second experiment (21).

b. Differing parameter sets In order to deal with
differing parameter sets that only partially overlap, one
needs to consider the union of all the unknowns as the
set of parameters. Combining data from different exper-
iments then works exactly as in Equation (21), only that
the parameter vector Θ is now the extended parameter
set. The likelihood functions are exactly the same as in
the individual-experiment case, with the only difference
that, as functions of the extended parameter set, they do
not depend on some of the parameters.

Consider the case where two data sets D1 and D2 de-
pend on parameter ϑ1, while the parameters ϑ2 and ϑ3

are specific for D1 and D2, respectively. Assuming the
error terms for both experiments to be independent, the
joint likelihood function then is the product

P(D1, D2|ϑ1, ϑ2, ϑ3, I)

= P(D1|ϑ1, ϑ2, ϑ3, I)× P(D2|ϑ1, ϑ2, ϑ3, I),

= P(D1|ϑ1, ϑ2, I)× P(D2|ϑ1, ϑ3, I). (22)

In order to simplify things, in the following we will
introduce the assumption that the conditional prior
P(ϑ2|ϑ1, ϑ3, I) is independent of ϑ3, i.e.,

P(ϑ2|ϑ1, ϑ3, I) = P(ϑ2|ϑ1, I) (23)

(since ϑ2 and ϑ3 were the parameters which did not
jointly affect both experiments, this may be easily satis-
fied, for example if P(ϑ1, ϑ2, ϑ3|I) = P(ϑ1|I)×P(ϑ2|I)×
P(ϑ3|I)). When considering additional data D2, the
change in the (marginal) posterior distribution of the two
parameters ϑ1 and ϑ2 then is given by

P(ϑ1, ϑ2|D1, D2, I) = P(ϑ1, ϑ2|D1, I)× P(ϑ1|D2, I)

P(ϑ1|I)
,

(24)
so that in order to “update” the posterior distribution
of ϑ1 and ϑ2 using the data D2 that depends on the
additional parameter ϑ3, we only need to consider the
marginal prior and posterior distributions of the com-
mon parameter ϑ1, P(ϑ1|I) and P(ϑ1|D2, I). We can
see that when updating the posterior by another poste-
rior (24), the (marginal) prior needs to be cancelled out,
otherwise it would enter twice into the resulting poste-
rior. Since by combining the posteriors we will only learn
about the common parameter ϑ1 here, it will be easier
to also integrate out ϑ2 and only consider the (marginal)
distributions involving ϑ1, which then leads to

P(ϑ1|D1, D2, I) = P(ϑ1|D1, I)× P(ϑ1|D2, I)

P(ϑ1|I)
. (25)

The higher-dimensional case works completely analo-
gously, just by considering the parameters ϑ1, ϑ2, ϑ3 to
be sub-vectors.
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3. The Gaussian approximation

As we will see below, the derived posterior distribu-
tions often turn out to be well approximated by a mul-
tivariate Gaussian distribution with mean µ and covari-
ance matrix Σ:

p(x|D) ≈ p(x;µ,Σ)

=
1

(2π)N |Σ|1/2
exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
.(26)

If the posterior distributions are expressed as Gaussians,
it is particularly easy to analytically propagate prior and
posterior information as described in the previous subsec-
tion; in the following we will therefore apply these results
to the Gaussian case. As a further simplification, we will
also assume all prior distributions to be uniform.

a. Identical parameter sets In order to combine the
results coming from two experiments D1 and D2, we will
need to combine their two posterior distributions as in
Equation (21). The results from experiments D1 and D2

will be summarized by parameters’ posterior means and
covariances {µ1,Σ1} and {µ2,Σ2}, respectively. Assum-
ing uniform priors, we can now combine both as

p(x|D1, D2) = p(x|D1)× p(x|D2)

= p(x;µ1,Σ1)× p(x;µ2,Σ2)

= p(x;µc,Σc), (27)

i.e., the product of posterior densities again is Gaussian
with mean µc and covariance Σc. The parameters of
the combined posterior may then be derived using the
following relationship

(x− u)TU−1(x− u) + (x− v)TV−1(x− v),

= (x−w)TW−1(x−w), (28)

where

w = W−1[Uu + Vv], W = U + V, (29)

so that the new mean and covariance turn out as

Σ−1c = Σ−11 + Σ−12 (30)

µc = Σc

[
Σ−11 µ1 + Σ−12 µ2

]
(31)

[15]. The same argument is easily extended to an arbi-
trary number N of experiments as

Σ−1N =

N∑
i=1

Σ−1
i (32)

µN = ΣN

N∑
i=1

Σ−1
i µi. (33)

b. Differing parameter sets Now suppose we have
results of two experiments in which the parameter
sets were not quite identical, as in the previous Sec-
tion III C 2 b. One may now either directly derive esti-
mates of the marginal distribution (i.e., their means and

covariances) and use those to combine the marginal pos-
teriors as in Equation (25) and in the previous section.
Otherwise, if given only the joint distributions (means
and covariances) of the differing (but intersecting) pa-
rameter sets, these may also be marginalized analytically.
For a Gaussian distribution the marginal distribution of
a subset of the variables is simply given by the corre-
sponding subset of mean and covariance parameters, i.e.,
by dropping the rows and columns corresponding to the
variables that are integrated out.

D. Implementation

Our implementation follows a four-step procedure to
analyze each experiment, all of them implemented as
LTPDA methods. The first step is to Fourier transform
the data. The noise’s power spectral density is estimated
using the Welch method [19] and applying a Blackman-
Harris window. We can then compute the log-likelihood
(13) and therefore find the maximum of the posterior
density function using a (Nelder-Mead) simplex search
algorithm [20]. Since with our strong signal injections
the likelihood surface apparently does not tend to exhibit
many secondary maxima, this step is usually sufficient to
determine the parameters to good accuracy and it is also
more efficient than waiting for the Metropolis sampler to
converge. However, if the likelihood surface shows sec-
ondary maxima, this method may lead to an erroneous
result. Next, the posterior covariance among parame-
ters according to input signals, noise and the relevant
transfer functions, is estimated by numerically evaluat-
ing the Fisher information matrix at the maximum deter-
mined in the previous optimization step. And finally, we
can integrate the posterior using a Markov Chain Monte
Carlo (MCMC) approach. We use a Metropolis algo-
rithm [15, 21] that will generate random samples from the
parameters’ (5-dimensional) posterior distribution. Gen-
eration of these samples is relatively easy based only on
the expression of the (unnormalized) posterior density
function ((12) or (14)).

In order to enhance convergence of the MCMC sam-
pler, we apply tempering to the posterior density func-
tion, which is supposed to make it more tractable and
keep the algorithm from getting stuck in local optima.
In the MCMC context, tempering is commonly imple-
mented by applying an exponent to the probability den-
sity to be sampled from, i.e., instead of using the pos-
terior p(θ|D, I), the tempered posterior p(θ|D, I)

1
T is

considered, where T ≥ 1 is the “temperature” [21, 22].
The 1

T exponent smoothens the targeted density func-
tion, which generally allows the sampler to move more
quickly and widely through parameter space and to tra-
verse between local modes more easily. The following
expression describes the temperature profile used in our
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TABLE IV. Estimated parameters for independent experiments.

Param. Value θ Estimated θ̂ ± σ |θ − θ̂|/σ σ/σCRB

Experiment 1

Gdf 0.8 0.800 02± 0.000 02 1.0 1.0

Gsus 1.15 1.150 000 1± 0.000 000 3 0.4 0.9

ω2
1 −1.1× 10−6 (−1.099 1± 0.000 5)× 10−6 1.7 1.0

ω2
2 −2.2× 10−6 (−2.200 1± 0.000 3)× 10−6 0.3 1.0

δ21 1.35× 10−4 (1.350 2± 0.000 6)× 10−4 0.3 1.0

∆ω2 −1.1× 10−6 (−1.101 0± 0.000 5)× 10−6 2.1 1.0

Experiment 2

Gdf 0.8 0.800 11± 0.000 05 2.2 1.0

Gsus 1.15 1.147± 0.004 0.8 1.0

ω2
1 −2.4× 10−6 (−5± 3)× 10−6 0.8 1.0

ω2
2 −2.4× 10−6 (−5± 3)× 10−6 0.8 1.0

δ21 1.35× 10−4 (1.349 7± 0.000 3)× 10−4 1.0 0.9

∆ω2 0 (−3± 6)× 10−10 0.5 1.1

Experiment 3

Gdf 0.8 0.799 8± 0.000 2 1.2 1.1

Gsus 1.15 1.150 3± 0.000 3 0.8 1.0

ω2
1 −1.1× 10−6 (−1.25± 0.09)× 10−6 1.7 1.0

ω2
2 −2.2× 10−6 (−2.35± 0.09)× 10−6 1.7 1.0

δ21 1.35× 10−4 (1.350± 0.001)× 10−4 0.3 1.0

∆ω2 −1.1× 10−6 (−1.0999± 0.0003)× 10−6 0.2 1.0

implementation [23],

T =


10
ξ
(

1−Th
Tc

)
1 ≤ i ≤ Th

10ξ(1− i
Tc

) Th ≤ i ≤ Tc

1 i ≥ Tc,

(34)

with i indexing the samples of the Metropolis chain. We
initially applied a constant temperature (with ξ = 3) for
the first 1000 iterations (Th = 1000), which was then
exponentially annealed down in the following 1000 iter-
ations (Tc = 2000), after which the algorithm was prop-
erly generating samples from the actual posterior distri-
bution. To reduce the time required during the search
phase we occasionally rescale the covariance matrix of
the proposal distribution to explore a wider region of the
parameter space. Also, as proposed in [15, 23], we cor-
rect the standard deviation of the proposal distribution
with a factor of d−1/2, where d is the parameter space
dimension.

E. Results and discussion

Figure 4 illustrates the marginal posterior probabil-
ity density functions of the individual parameters based
on the different experiments. Parameter estimates are
shown in Table IV, together with a comparison of the es-
timated error and the Cramér-Rao bounds, as derived in
Section III B. The parameters are recovered successfully

with estimation uncertainties roughly following the cor-
responding CRB, as shown in the last column of table IV.
The worse estimate appears to be a ∼ 2σ deviation on
the Gdf parameter in experiment 2. This result is still
consistent with the true value used to generate the data.
However, to further investigate this feature we generated
a new set of data using the same tools and parameters.
The analysis of the new data did not reproduce an offset
estimate, whence we discarded a systematic bias on Gdf

parameter in experiment 2.

As expected, the best estimates come from the first
experiment since the signal is richer in that case. The
fact that a signal is injected on both channels makes this
experiment the most sensitive in terms of the determina-
tion of the stiffness difference between both test masses,
reaching indeed the CRB, and obviously translating into
a better estimate for the remaining parameters.

Only the second experiment allows a better estimation
of one of the parameters, δ21, since in this case we are
canceling the second cross-coupling term, ω2

2 − ω2
1 , by

forcing stiffnesses from both test masses to have the same
value. As expected, the absolute value of the stiffness
can not be determined accurately in such a case. The
reason being that the matched stiffness configuration is
precisely designed to make the experiment insensitive to
stiffness differences, which naturally turns into a poor
estimation of the parameter. It is however remarkable
that, thanks to the cross-variance terms, we can have
a good determination of the difference between the two
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stiffnesses, which should be identically zero in this case.
That’s indeed the value retrieved by our analysis with an
uncertainty of 7× 10−10 s−2.

It is worth comparing here the results obtained with
the analysis to measured quantities. Although the nu-
merical values may differ, it may be relevant to com-
pare the uncertainties of the values in order to check
that our model is in quantitative agreement with exper-
iments being performed. To do so we take the stiffness
as our figure of merit since it has been extensively char-
acterized in the torsion pendulum facility [24]. Recent
experiments in this facility report a remnant stiffness
coupling the test masses to the surrounding GRS pro-
totype of (2.5 ± 0.1) × 109 N/m [25]. When scaled by
the mass of the LTP test masses (1.96 kg) so to be ex-
pressed in terms of force per unit mass, these figure be-
comes (1.28 ± 0.05)× 109 s−2, which could be compared
to the uncertainty in the estimation of the stiffness in
our model, which reaches 3 × 10−10 s−2 for the second
test mass stiffness in experiment 1. The simplified noise
model that we used for the analysis therefore seems to be
consistent with the numbers coming from experiments.
Both numbers are, however, orders of magnitude below
the required remnant stiffness on board the satellite of
14× 10−7 s−2 [26].

The data analysis during LISA Pathfinder operations
will be strongly conditioned by the operations schedule.
In Section III C we describe how to exploit the posterior
distribution in order to combine results from different
experiments. We applied that scheme to our results in
order to produce a unique set of parameters for both
cases previously described: all parameters being identi-
cal (experiment 1 & 3) and experiments with different
numerical values of the parameters (combining all exper-
iments). Given the approximately normal distribution of
the parameters that we get from the Monte Carlo inte-
gration in Figure 4, it is justified to apply the Gaussian
formalism that we introduced in Section III C. In partic-
ular, we just need to apply Equation (25) to our set of
experiments. Results in Table V show an improvement
in the uncertainty of the estimate. According to (21),
the same scheme could be obtained by considering the
posterior distribution of one experiment as a prior for
the following one. This would also improve the conver-
gence time of the search, which could be an important
consideration during operations.

IV. SUMMARY AND FUTURE WORK

We have shown how a Markov chain Monte Carlo
method can be used for parameter estimation in the LISA
Pathfinder mission. In order to demonstrate so, we gener-
ated data from a simplified model of the main experiment
on board the mission, the LTP. This data set contains
runs where we injected signals to test the instrument,
which must allow the recovery of the parameters, and
also some runs without any injection, used to evaluate

TABLE V. Combination of results for different experiments.
Two values are reported when combining all experiments for
parameters ω2

1 , ω2
1 and ∆ω2. The top one is the result ob-

tained by combining the values for experiment 1 & 3, the
bottom one corresponds to the matched stiffness experiment.

Parameter Estimated

Experiment 1 & 3 All experiments

Gdf 0.800 02± 0.000 02 0.800 03± 0.000 01

Gsus 1.150 000 1± 0.000 000 3 1.150 000 9± 0.000 000 3

ω2
1 (−1.100 0± 0.000 4)

(−1.100 0± 0.000 4)

(−5± 3)(× 10−6)

ω2
2 (−2.200 1± 0.000 3)

(−2.200 0± 0.000 3)

(−5± 3)(× 10−6)

δ12 (1.349 8± 0.000 5) (1.349 67± 0.000 02)

(× 10−4)

∆ω2 (−1.100 2± 0.000 2)
(−1.1002± 0.000 2)

(−0.0003± 0.0006)(× 10−6)

the noise performance of the instrument. We think that
the model used in our analysis serves as a complementary
approach to the already existing LISA simulators, since
it includes some more detail in the test mass dynamics
and its coupling to the test mass motion, precisely one of
the key points that LISA Pathfinder aims to investigate.

The analysis presented here includes an estimate of the
optimal error achievable (for an unbiased estimate) for a
given injected signal and a configuration of the experi-
ment. These results are of relevance for the mission since
they show that it is as important to develop data anal-
ysis tools as to to carefully design the experiment to be
performed in flight. With our model, a different injec-
tion signal showed to improve two orders of magnitude
the estimation of the test mass stiffnesses — results for
experiment 1 and 3 in Table II. Although the expected
parameter uncertainties in the real mission will be larger
than the ones reported here, the dependencies on the pa-
rameters are representative. Thus, the decrease on the
optimal error could be applicable to the real mission as
well. We will need however to confirm this result with
more realistic models.

The method developed here to analyse the data reaches
roughly the optimal attainable error for each single ex-
periment. The combination of the results for different
experiments obviously reduces the uncertainty on the pa-
rameters, reaching lower errors than the ones originally
derived from the Cramér-Rao bound for each indepen-
dent experiment. When combining different experiments,
our analysis took advantage of the gaussian posterior ob-
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tained during the sampling of the likelihood surface, so
that a simple algebraic operation between gaussian dis-
tribution was enough to derive a combined estimate of all
experiments. However, the framework is general enough
to include non-gaussian profiles, given that the full pro-
file of the posterior is obtained during the sampling of
the likelihood surface.

The combination of estimates was performed here as
an off-line operation, i.e. after all experiments were anal-
ysed. A natural extension to this work would be to use
the posterior distribution for a given experiment as prior
for the next one, as motivated in Equation (21). This
concept of a chain of experiments is particularly suitable
for LISA Pathfinder since, during flight operations, we
will naturally need to include results of previous exper-
iments in the next foreseen ones. In other words, if the
test mass stiffnesses are clearly determined in an experi-
ment we may want to use that information for forthcom-
ing experiments in order to effectively reduce the dimen-
sion of our problem. The method described here pro-
vides a way to include this information in the analysis in
a clear way. Moreover, the capability to use this infor-
mation could be a powerful advantage during operations

due to the reduction of convergence time that it implies.
An increase in the uncertainty on the estimates is to

be expected when dealing with a more realistic model
due to the increase in dimensions of the parameter
space. This is precisely the step that we will face in the
forthcoming activities in preparation for the LTP data
analysis. Our aim is to study in detail the experiments
defined to be implemented in flight, now that the basic
functionality of the parameter estimation tool is already
demonstrated. In that sense, next steps will include
a three dimensions model and more complex injected
signals, that will make use of the full capabilities of the
spacecraft. This work is ongoing and will be presented
in due time.
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FIG. 4. Histograms of the MCMC samples illustrating the individual parameters’ marginal posterior probability distributions
as computed with the last 3500 samples of the chain. All histograms are plot with the same y axes range, up to 250 counts.
Black vertical lines illustrate the true parameter values. Parameters Gdf , Gsus and δ21 are dimensionless; dimensions for stiffness
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