14 research outputs found

    Effects of intubation timing in patients with COVID-19 throughout the four waves of the pandemic : a matched analysis

    Get PDF
    The primary aim of our study was to investigate the association between intubation timing and hospital mortality in critically ill patients with COVID-19-associated respiratory failure. We also analysed both the impact of such timing throughout the first four pandemic waves and the influence of prior non-invasive respiratory support on outcomes. This is a secondary analysis of a multicentre, observational and prospective cohort study that included all consecutive patients undergoing invasive mechanical ventilation due to COVID-19 from across 58 Spanish intensive care units (ICU) participating in the CIBERESUCICOVID project. The study period was between 29 February 2020 and 31 August 2021. Early intubation was defined as that occurring within the first 24 h of intensive care unit (ICU) admission. Propensity score (PS) matching was used to achieve balance across baseline variables between the early intubation cohort and those patients who were intubated after the first 24 h of ICU admission. Differences in outcomes between early and delayed intubation were also assessed. We performed sensitivity analyses to consider a different timepoint (48 h from ICU admission) for early and delayed intubation. Of the 2725 patients who received invasive mechanical ventilation, a total of 614 matched patients were included in the analysis (307 for each group). In the unmatched population, there were no differences in mortality between the early and delayed groups. After PS matching, patients with delayed intubation presented higher hospital mortality (27.3% versus 37.1%, p =0.01), ICU mortality (25.7% versus 36.1%, p=0.007) and 90-day mortality (30.9% versus 40.2%, p=0.02) when compared to the early intubation group. Very similar findings were observed when we used a 48-hour timepoint for early or delayed intubation. The use of early intubation decreased after the first wave of the pandemic (72%, 49%, 46% and 45% in the first, second, third and fourth wave, respectively; first versus second, third and fourth waves p<0.001). In both the main and sensitivity analyses, hospital mortality was lower in patients receiving high-flow nasal cannula (n=294) who were intubated earlier. The subgroup of patients undergoing NIV (n=214) before intubation showed higher mortality when delayed intubation was set as that occurring after 48 h from ICU admission, but not when after 24 h. In patients with COVID-19 requiring invasive mechanical ventilation, delayed intubation was associated with a higher risk of hospital mortality. The use of early intubation significantly decreased throughout the course of the pandemic. Benefits of such an approach occurred more notably in patients who had received high-flow nasal cannul

    Unsuccessful and Successful Clinical Trials in Acute Respiratory Distress Syndrome : Addressing Physiology-Based Gaps

    No full text
    The acute respiratory distress syndrome (ARDS) is a severe form of acute hypoxemic respiratory failure caused by an insult to the alveolar-capillary membrane, resulting in a marked reduction of aerated alveoli, increased vascular permeability and subsequent interstitial and alveolar pulmonary edema, reduced lung compliance, increase of physiological dead space, and hypoxemia. Most ARDS patients improve their systemic oxygenation, as assessed by the ratio between arterial partial pressure of oxygen and inspired oxygen fraction, with conventional intensive care and the application of moderate-to-high levels of positive end-expiratory pressure. However, in some patients hypoxemia persisted because the lungs are markedly injured, remaining unresponsive to increasing the inspiratory fraction of oxygen and positive end-expiratory pressure. For decades, mechanical ventilation was the only standard support technique to provide acceptable oxygenation and carbon dioxide removal. Mechanical ventilation provides time for the specific therapy to reverse the disease-causing lung injury and for the recovery of the respiratory function. The adverse effects of mechanical ventilation are direct consequences of the changes in pulmonary airway pressures and intrathoracic volume changes induced by the repetitive mechanical cycles in a diseased lung. In this article, we review 14 major successful and unsuccessful randomized controlled trials conducted in patients with ARDS on a series of techniques to improve oxygenation and ventilation published since 2010. Those trials tested the effects of adjunctive therapies (neuromuscular blocking agents, prone positioning), methods for selecting the optimum positive end-expiratory pressure (after recruitment maneuvers, or guided by esophageal pressure), high-frequency oscillatory ventilation, extracorporeal oxygenation, and pharmacologic immune modulators of the pulmonary and systemic inflammatory responses in patients affected by ARDS. We will briefly comment physiology-based gaps of negative trials and highlight the possible needs to address in future clinical trials in ARDS

    Photoplethysmographic characterization of vascular tone mediated changes in arterial pressure: an observational study

    No full text
    To determine whether a classification based on the contour of the photoplethysmography signal (PPGc) can detect changes in systolic arterial blood pressure (SAP) and vascular tone. Episodes of normotension (SAP 90–140 mmHg), hypertension (SAP > 140 mmHg) and hypotension (SAP 50% in a small PPG, while class IV-to-VI described vasodilation with a notch placed < 20% in a tall PPG wave. 190 datasets were analyzed including 61 episodes of hypertension [SAP = 159 (151–170) mmHg (median 1st–3rd quartiles)], 84 of normotension, SAP = 124 (113–131) mmHg and 45 of hypotension SAP = 85(80–87) mmHg. SAP were well correlated with SVR (r = 0.78, p < 0.0001) and Cvasc (r = 0.84, p < 0.0001). The PPG-based classification correlated well with SAP (r = − 0.90, p < 0.0001), SVR (r = − 0.72, p < 0.0001) and Cvasc (r = 0.82, p < 0.0001). The PPGc misclassified 7 out of the 190 episodes, presenting good accuracy (98.4% and 97.8%), sensitivity (100% and 94.9%) and specificity (97.9% and 99.2%) for detecting episodes of hypotension and hypertension, respectively. Changes in arterial pressure and vascular tone were closely related to the proposed classification based on PPG waveform. Clinical Trial Registration NTC02854852.Fil: Tusman, Gerardo Horacio. Hospital Privado de Comunidad. Departamento de Anestesiología y Medicina Intensiva; ArgentinaFil: Acosta, Cecilia María. Hospital Privado de Comunidad. Departamento de Anestesiología y Medicina Intensiva; ArgentinaFil: Pulletz, Sven. Klinikum Osnabrück; AlemaniaFil: Böhm, Stephan H.. Rostock University Medical Center. Department of Anesthesiology and Intensive Care Medicine. ; AlemaniaFil: Scandurra, Adriana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; ArgentinaFil: Martinez Arca, Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; ArgentinaFil: Madorno, Matias. Instituto Tecnológico de Buenos Aires; ArgentinaFil: Suárez Sipmann, Fernando. Uppsala University. Department of Surgical Sciences; Suecia. Hospital Universitario de La Princesa. Servicio de Medicina Intensiva; España. Universidad Carlos III de Madrid. Instituto de Salud; Españ

    Non-invasive monitoring of central blood pressure by electrical impedance tomography: First experimental evidence

    No full text
    There is a strong clinical demand for devices allowing continuous non-invasive monitoring of central blood pressure (BP). In the state of the art a new family of techniques providing BP surrogates based on the measurement of the so-called pulse wave velocity (PWV) has been proposed, eliminating the need for inflation cuffs. PWV is defined as the velocity at which pressure pulses propagate along the arterial wall. However, no technique to assess PWV within central arteries in a fully unsupervised manner has been proposed so far. In this pilot study, we provide first experimenta

    Adjusting tidal volume to stress index in an open lung condition optimizes ventilation and prevents overdistension in an experimental model of lung injury and reduced chest wall compliance

    No full text
    Introduction: The stress index ( SI), a parameter derived from the shape of the pressure-time curve, can identify injurious mechanical ventilation. We tested the hypothesis that adjusting tidal volume (VT) to a non-injurious SI in an open lung condition avoids hypoventilation while preventing overdistension in an experimental model of combined lung injury and low chest-wall compliance (Ccw). Methods: Lung injury was induced by repeated lung lavages using warm saline solution, and Ccw was reduced by controlled intra-abdominal air-insufflation in 22 anesthetized, paralyzed and mechanically ventilated pigs. After injury animals were recruited and submitted to a positive end-expiratory pressure (PEEP) titration trial to find the PEEP level resulting in maximum compliance. During a subsequent four hours of mechanical ventilation, VT was adjusted to keep a plateau pressure (Pplat) of 30 cmH2O (Pplat-group, n = 11) or to a SI between 0.95 and 1.05 (SI-group, n = 11). Respiratory rate was adjusted to maintain a 'normal' PaCO2 (35 to 65 mmHg). SI, lung mechanics, arterial-blood gases haemodynamics pro-inflammatory cytokines and histopathology were analyzed. In addition Computed Tomography (CT) data were acquired at end expiration and end inspiration in six animals. Results: PaCO2 was significantly higher in the Pplat-group (82 versus 53 mmHg, P = 0.01), with a resulting lower pH (7.19 versus 7.34, P = 0.01). We observed significant differences in VT (7.3 versus 5.4 mlKg-1, P = 0.002) and Pplat values (30 versus 35 cmH2O, P = 0.001) between the Pplat-group and SI-group respectively. SI (1.03 versus 0.99, P = 0.42) and end-inspiratory transpulmonary pressure (PTP) (17 versus 18 cmH2O, P = 0.42) were similar in the Pplat-and SI-groups respectively, without differences in overinflated lung areas at end-inspiration in both groups. Cytokines and histopathology showed no differences. Conclusions: Setting tidal volume to a non-injurious stress index in an open lung condition improves alveolar ventilation and prevents overdistension without increasing lung injury. This is in comparison with limited Pplat protective ventilation in a model of lung injury with low chest-wall compliance

    Efficacy of dexamethasone treatment for patients with the acute respiratory distress syndrome caused by COVID-19: study protocol for a randomized controlled superiority trial

    No full text
    Abstract Background There are no specific generally accepted therapies for the coronavirus disease 2019 (COVID-19). The full spectrum of COVID-19 ranges from asymptomatic disease to mild respiratory tract illness to severe pneumonia, acute respiratory distress syndrome (ARDS), multisystem organ failure, and death. The efficacy of corticosteroids in viral ARDS remains unknown. We postulated that adjunctive treatment of established ARDS caused by COVID-19 with intravenous dexamethasone might change the pulmonary and systemic inflammatory response and thereby reduce morbidity, leading to a decrease in duration of mechanical ventilation and in mortality. Methods/design This is a multicenter, randomized, controlled, parallel, open-label, superiority trial testing dexamethasone in 200 mechanically ventilated adult patients with established moderate-to-severe ARDS caused by confirmed SARS-CoV-2 infection. Established ARDS is defined as maintaining a PaO2/FiO2 ≤ 200 mmHg on PEEP ≥ 10 cmH2O and FiO2 ≥ 0.5 after 12 ± 3 h of routine intensive care. Eligible patients will be randomly assigned to receive either dexamethasone plus standard intensive care or standard intensive care alone. Patients in the dexamethasone group will receive an intravenous dose of 20 mg once daily from day 1 to day 5, followed by 10 mg once daily from day 6 to day 10. The primary outcome is 60-day mortality. The secondary outcome is the number of ventilator-free days, defined as days alive and free from mechanical ventilation at day 28 after randomization. All analyses will be done according to the intention-to-treat principle. Discussion This study will assess the role of dexamethasone in patients with established moderate-to-severe ARDS caused by SARS-CoV-2. Trial registration ClinicalTrials.gov NCT04325061 . Registered on 25 March 2020 as DEXA-COVID19

    Awake prone positioning does not reduce the risk of intubation in COVID-19 treated with high-flow nasal oxygen therapy: a multicenter, adjusted cohort study

    No full text
    Background: Awake prone positioning (awake-PP) in non-intubated coronavirus disease 2019 (COVID-19) patients could avoid endotracheal intubation, reduce the use of critical care resources, and improve survival. We aimed to examine whether the combination of high-flow nasal oxygen therapy (HFNO) with awake-PP prevents the need for intubation when compared to HFNO alone. Methods: Prospective, multicenter, adjusted observational cohort study in consecutive COVID-19 patients with acute respiratory failure (ARF) receiving respiratory support with HFNO from 12 March to 9 June 2020. Patients were classified as HFNO with or without awake-PP. Logistic models were fitted to predict treatment at baseline using the following variables: age, sex, obesity, non-respiratory Sequential Organ Failure Assessment score, APACHE-II, C-reactive protein, days from symptoms onset to HFNO initiation, respiratory rate, and peripheral oxyhemoglobin saturation. We compared data on demographics, vital signs, laboratory markers, need for invasive mechanical ventilation, days to intubation, ICU length of stay, and ICU mortality between HFNO patients with and without awake-PP. Results: A total of 1076 patients with COVID-19 ARF were admitted, of which 199 patients received HFNO and were analyzed. Fifty-five (27.6%) were pronated during HFNO; 60 (41/100) and 22 (40/100) patients from the HFNO and HFNO + awake-PP groups were intubated. The use of awake-PP as an adjunctive therapy to HFNO did not reduce the risk of intubation [RR 0.87 (95/100 CI 0.53–1.43), p equal 0.60]. Patients treated with HFNO + awake-PP showed a trend for delay in intubation compared to HFNO alone [median 1 (interquartile range, IQR 1.0–2.5) vs 2 IQR 1.0–3.0] days (p equal 0.055), but awake-PP did not affect 28-day mortality [RR 1.04 (95/100 CI 0.40–2.72), p equal 0.92].Conclusion: In patients with COVID-19 ARF treated with HFNO, the use of awake-PP did not reduce the need for intubation or affect mortality
    corecore