3,924 research outputs found

    Scattering in Multilayered Structures: Diffraction from a Nanohole

    Get PDF
    The spectral expansion of the Green's tensor for a planar multilayered structure allows us to semi analytically obtain the angular spectrum representation of the field scattered by an arbitrary dielectric perturbation present in the structure. In this paper we present a method to find the expansion coefficients of the scattered field, given that the electric field inside the perturbation is available. The method uses a complete set of orthogonal vector wave functions to solve the structure's vector wave equation. In the two semi-infinite bottom and top media, those vector wave functions coincide with the plane-wave basis vectors, including both propagating and evanescent components. The technique is used to obtain the complete angular spectrum of the field scattered by a nanohole in a metallic film under Gaussian illumination. We also show how the obtained formalism can easily be extended to spherically and cylindrically multilayered media. In those cases, the expansion coefficients would multiply the spherical and cylindrical vector wave functions.Comment: 9 pages, 5 figure

    High-pressure shift freezing : Recrystallization during storage

    Get PDF
    High-pressure shift freezing has been proposed as a method to produce frozen food with smaller ice crystal size and, consequently, with reduced tissular damage and higher overall quality. The fate of this initially improved crystal size distribution, decisive for the long-term value of this procedure, is unclear. The recrystallization behaviour of partially frozen aqueous solutions, as food models, is here compared with that of similar classically frozen samples. A microscopic observation cell has been specially designed for this purpose. The temporal evolution of high-pressure shift frozen ice crystals has been fitted to different mechanism models and is found to be similar within experimental error to that of classically frozen samples. However, differences in the shape evolution of crystals have been detected, which can be ascribed to small differences in the initial distribution. The implications of these observations for the long-term storage of frozen food are discussed.Centro de Investigación y Desarrollo en Criotecnología de Alimento

    Differential genetic interactions of yeast stress response MAPK pathways.

    Get PDF
    Genetic interaction screens have been applied with great success in several organisms to study gene function and the genetic architecture of the cell. However, most studies have been performed under optimal growth conditions even though many functional interactions are known to occur under specific cellular conditions. In this study, we have performed a large-scale genetic interaction analysis in Saccharomyces cerevisiae involving approximately 49 × 1,200 double mutants in the presence of five different stress conditions, including osmotic, oxidative and cell wall-altering stresses. This resulted in the generation of a differential E-MAP (or dE-MAP) comprising over 250,000 measurements of conditional interactions. We found an extensive number of conditional genetic interactions that recapitulate known stress-specific functional associations. Furthermore, we have also uncovered previously unrecognized roles involving the phosphatase regulator Bud14, the histone methylation complex COMPASS and membrane trafficking complexes in modulating the cell wall integrity pathway. Finally, the osmotic stress differential genetic interactions showed enrichment for genes coding for proteins with conditional changes in phosphorylation but not for genes with conditional changes in gene expression. This suggests that conditional genetic interactions are a powerful tool to dissect the functional importance of the different response mechanisms of the cell

    Entrenamiento de las señales corticales a través de un sistema BMI-EEG, evolución e intervención. A propósito de un caso = Training cortical signals by means of a BMI-EEG system, its evolution and intervention. A case report

    Get PDF
    INTRODUCTION: In the last years, new technologies such as the brain-machine interfaces (BMI) have been incorporated in the rehabilitation process of subjects with stroke. These systems are able to detect motion intention, analyzing the cortical signals using different techniques such as the electroencephalography (EEG). This information could guide different interfaces such as robotic devices, electrical stimulation or virtual reality. CASE REPORT: A 40 years-old man with stroke with two months from the injury participated in this study. We used a BMI based on EEG. The subject's motion intention was analyzed calculating the event-related desynchronization. The upper limb motor function was evaluated with the Fugl-Meyer Assessment and the participant's satisfaction was evaluated using the QUEST 2.0. The intervention using a physical therapist as an interface was carried out without difficulty. CONCLUSIONS: The BMI systems detect cortical changes in a subacute stroke subject. These changes are coherent with the evolution observed using the Fugl-Meyer Assessment

    Iron overload causes endolysosomal deficits modulated by NAADP-regulated 2-pore channels and RAB7A

    Get PDF
    Various neurodegenerative disorders are associated with increased brain iron content. Iron is known to cause oxidative stress, which concomitantly promotes cell death. Whereas endolysosomes are known to serve as intracellular iron storage organelles, the consequences of increased iron on endolysosomal functioning, and effects on cell viability upon modulation of endolysosomal iron release remain largely unknown. Here, we show that increasing intracellular iron causes endolysosomal alterations associated with impaired autophagic clearance of intracellular protein aggregates, increased cytosolic oxidative stress and increased cell death. These effects are subject to regulation by NAADP, a potent second messenger reported to target endolysosomal TPCNs (2-pore channels). Consistent with endolysosomal iron storage, cytosolic iron levels are modulated by NAADP, and increased cytosolic iron is detected when overexpressing active, but not inactive TPCNs, indicating that these channels can modulate endolysosomal iron release. Cell death triggered by altered intralysosomal iron handling is abrogated in the presence of an NAADP antagonist or when inhibiting RAB7A activity. Taken together, our results suggest that increased endolysosomal iron causes cell death associated with increased cytosolic oxidative stress as well as autophagic impairments, and these effects are subject to modulation by endolysosomal ion channel activity in a RAB7A-dependent manner. These data highlight alternative therapeutic strategies for neurodegenerative disorders associated with increased intracellular iron load

    High-pressure shift freezing : Recrystallization during storage

    Get PDF
    High-pressure shift freezing has been proposed as a method to produce frozen food with smaller ice crystal size and, consequently, with reduced tissular damage and higher overall quality. The fate of this initially improved crystal size distribution, decisive for the long-term value of this procedure, is unclear. The recrystallization behaviour of partially frozen aqueous solutions, as food models, is here compared with that of similar classically frozen samples. A microscopic observation cell has been specially designed for this purpose. The temporal evolution of high-pressure shift frozen ice crystals has been fitted to different mechanism models and is found to be similar within experimental error to that of classically frozen samples. However, differences in the shape evolution of crystals have been detected, which can be ascribed to small differences in the initial distribution. The implications of these observations for the long-term storage of frozen food are discussed.Centro de Investigación y Desarrollo en Criotecnología de Alimento
    corecore