10 research outputs found

    Comparison of seven prognostic tools to identify low-risk pulmonary embolism in patients aged <50 years

    Get PDF
    publishersversionPeer reviewe

    Lattice light-sheet microscopy and photo-stimulation in brain slices

    No full text
    International audienceLattice light sheet (LLS) fluorescence microscopy is a powerful recent technique for in vivo imaging of single and multi-cellular samples at very high spatio-temporal resolutions. We built a LLS microscope in which we added a photo-stimulation path to perform all-optical neurophysiological studies in rodent hippocampal brain slices. Thanks to the photo-stimulation path we could achieve fluorescence recovery after photobleaching (FRAP) or glutamate uncaging at spatially and temporally controlled regions of interest. Several fluorescence labelling protocols were employed depending on the imaged structure. Sub-micrometric neuronal elements such as spines or dendritic vesicles could be imaged down to ~20 µm below the surface. We demonstrate the performances of LLS in several ongoing studies: measurement of AMPA receptor surface diffusion at single spines, vesicular transport in dendrites, spontaneous and stimulated local calcium activity in neurons and astrocytes

    Oxygen glucose deprivation switches the transport of tPA across the blood-brain barrier from an LRP-dependent to an increased LRP-independent process

    No full text
    International audienceBackground and Purpose—Despite uncontroversial benefit from its thrombolytic activity, the documented neurotoxic effect of tissue plasminogen activator (tPA) raises an important issue: the current emergency stroke treatment might not be optimum if exogenous tPA can enter the brain and thus add to the deleterious effects of endogenous tPA within the cerebral parenchyma. Here, we aimed at determining whether vascular tPA crosses the blood-brain barrier (BBB) during cerebral ischemia, and if so, by which mechanism. Methods—First, BBB permeability was assessed in vivo by measuring Evans Blue extravasation following intravenous injection at 0 or 3 hours after middle cerebral artery electrocoagulation in mice. Second, the passage of vascular tPA was investigated in an in vitro model of BBB, subjected or not to oxygen and glucose deprivation (OGD). Results—We first demonstrated that after focal permanent ischemia in mice, the BBB remains impermeable to Evans Blue in the early phase (relative to the therapeutic window of tPA), whereas at later time points massive Evans Blue extravasation occurs. Then, the passage of tPA during these 2 phases, was investigated in vitro and we show that in control conditions, tPA crosses the intact BBB by a low-density lipoprotein (LDL) receptor-related protein (LRP)-dependent transcytosis, whereas OGD leads to an exacerbation of tPA passage, which switches to a LRP-independent process. Conclusion—We evidence 2 different mechanisms through which vascular tPA can reach the brain parenchyma, depending on the state of the BBB. As discussed, these data show the importance of taking the side effects of blood-derived tPA into account and offer a basis to improve the current thrombolytic strategy

    Tissue-type plasminogen activator crosses the intact blood-brain barrier by low-density lipoprotein receptor–related protein-mediated transcytosis

    No full text
    International audienceBackground—Accumulating evidence demonstrates a critical involvement of tissue-type plasminogen activator (tPA) in pathological and physiological brain conditions. Determining whether and how vascular tPA can cross the blood-brain barrier (BBB) to enter the brain is thus important, not only during stroke but also in physiological conditions. Methods and Results—In the present work, we provide evidence in vivo that intravenous injection of tPA increases NMDA-induced striatal lesion in the absence of BBB leakage. Accordingly, we show that tPA crosses the BBB both after excitotoxic lesion and in control conditions. Indeed, vascular injected tPA can be detected within the brain parenchyma and in the cerebrospinal fluid. By using an in vitro model of BBB, we have confirmed that tPA can cross the intact BBB. Its passage was blocked at 4°C, was saturable, and was independent of its proteolytic activity. We have shown that tPA crosses the BBB by transcytosis, mediated by a member of the LDL receptor–related protein family. Conclusions—We demonstrate that blood-derived tPA can reach the brain parenchyma without alteration of the BBB. The molecular mechanism of the passage of tPA from blood to brain described here could represent an interesting target to improve thrombolysis in stroke

    Anti-NR1 N-terminal-domain vaccination unmasks the crucial action of tPA on NMDA-receptor-mediated toxicity and spatial memory.

    No full text
    International audienceFine-tuning of NMDA glutamatergic receptor signalling strategically controls crucial brain functions. This process depends on several ligands and modulators, one of which unexpectedly includes the serine protease tissue-type plasminogen activator (tPA). In vitro, tPA increases NMDA-receptor-mediated calcium influx by interacting with, and then cleaving, the NR1 subunit within its N-terminal domain. Owing to lack of in vivo evidence of the relevance and contribution of this mechanism in physiological and pathological brain processes, active immunisation was developed here in mice, to allow transient and specific prevention of the interaction of tPA with the NR1 subunit. Immunisation significantly reduced the severity of ischemic and excitotoxic insults in the mouse brain. Cognitive function was altered in some, but not all behavioural tasks affected in tPA-deficient mice. Our data demonstrate that in vivo, tPA controls neurotoxicity and the encoding of novel spatial experiences by binding to and cleaving the NMDA receptor NR1 subunit. Interesting therapeutic possibilities for several brain pathologies that involve excitotoxicity may now be envisaged

    Engineering paralog-specific PSD-95 recombinant binders as minimally interfering multimodal probes for advanced imaging techniques

    No full text
    Despite the constant advances in fluorescence imaging techniques, monitoring endogenous proteins still constitutes a major challenge in particular when considering dynamics studies or super-resolution imaging. We have recently evolved specific protein-based binders for PSD-95, the main postsynaptic scaffold proteins at excitatory synapses. Since the synthetic recombinant binders recognize epitopes not directly involved in the target protein activity, we consider them here as tools to develop endogenous PSD-95 imaging probes. After confirming their lack of impact on PSD-95 function, we validated their use as intrabody fluorescent probes. We further engineered the probes and demonstrated their usefulness in different super-resolution imaging modalities (STED, PALM, and DNA-PAINT) in both live and fixed neurons. Finally, we exploited the binders to enrich at the synapse genetically encoded calcium reporters. Overall, we demonstrate that these evolved binders constitute a robust and efficient platform to selectively target and monitor endogenous PSD-95 using various fluorescence imaging techniques

    Prediction of early mortality in patients with cancer-associated thrombosis in the RIETE Database

    No full text
    corecore