43 research outputs found

    Improving multi-technique monitoring using Sentinel-1 and Cosmo-SkyMed data and upgrading groundwater model capabilities

    Get PDF
    Aquifer-systems have become a strategic source of fresh water in the present climatic conditions, especially under stress in arid regions like the Iberian Mediterranean Arc. Understanding the behavior of groundwater reservoirs is crucial to their well-management and mitigation of adverse consequences of overexploitation. In this work, we use space geodetic measurements from satellite interferometric synthetic aperture radar (InSAR) and Global Positioning System (GPS) data, covering the period 2011–2017, to predict and validate the ground surface displacement over the fastest subsiding basin due to groundwater withdrawal in Europe (>10 cm/year). The 2D decomposition of InSAR displacements from Cosmo-SkyMed and Sentinel-1 satellites allows us to detect horizontal deformation towards the basin center, with a maximum displacement of 1.5 cm/year. InSAR results were introduced in a newly developed methodology for aquifer system management to estimate unknown pumping rates for the 2012–2017 period. This study illustrates how the combination of InSAR data, groundwater flow and deformation models can be used to improve the aquifer-systems sustainable management.This work was supported by the Spanish Ministry of Science, Innovation and Universities (MICINN), Spain; the State Agency of Research (AEI), Spain; and European Funds for Regional Development (FEDER), under projects AQUARISK (ESP2013-47780-C2-2-R), TEMUSA (TEC2017-85244-C2-1-P) and STAR-EO (TIN2014-55413-C2-2-P). First author shows gratitude for PhD student contract BES-2014-069076. A first version of this work was written during the research stay of first and second authors in the Università degli Studi di Firenze supported by the Spanish Ministry of Education, Culture and Sport, under fellowships EEBB-I-18-13014 and PRX17/00439, respectively

    Vulnerability Assessment of Buildings due to Land Subsidence using InSAR Data in the Ancient Historical City of Pistoia (Italy)

    Get PDF
    The launch of the medium resolution Synthetic Aperture Radar (SAR) Sentinel-1 constellation in 2014 has allowed public and private organizations to introduce SAR interferometry (InSAR) products as a valuable option in their monitoring systems. The massive stacks of displacement data resulting from the processing of large C-B and radar images can be used to highlight temporal and spatial deformation anomalies, and their detailed analysis and postprocessing to generate operative products for final users. In this work, the wide-area mapping capability of Sentinel-1 was used in synergy with the COSMO-SkyMed high resolution SAR data to characterize ground subsidence affecting the urban fabric of the city of Pistoia (Tuscany Region, central Italy). Line of sight velocities were decomposed on vertical and E–W components, observing slight horizontal movements towards the center of the subsidence area. Vertical displacements and damage field surveys allowed for the calculation of the probability of damage depending on the displacement velocity by means of fragility curves. Finally, these data were translated to damage probability and potential loss maps. These products are useful for urban planning and geohazard management, focusing on the identification of the most hazardous areas on which to concentrate efforts and resources.This work was supported by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO), the State Agency of Research (AEI) and European Funds for Regional Development (FEDER) under projects AQUARISK (ESP2013-47780-C2-2-R) and TEMUSA (TEC2017-85244-C2-1-P) and STAR-EO (TIN2014-55413-C2-2-P). The first author shows gratitude for the PhD student contract BES-2014-069076. The work was conceived during the research stay of P. Ezquerro and R. Tomás in the Università degli Studi di Firenze and the research stay of G. Herrera in the IGOT Lisbon University, supported by the Spanish Ministry of Education, Culture and Sport under fellowships EEBB-I-18-13014, PRX17/00439 and PRX19/00065, respectively. The S-1 monitoring activity is funded and supported by the Tuscany Region under the agreement “Monitoring ground deformation in the Tuscany Region with satellite radar data.” The authors also gratefully acknowledge TRE ALTAMIRA for having processed the S-1 data. The project was carried out using CSK® Products, © ASI (Italian Space Agency), delivered under the ASI Project Id Science 678 - “High resolution Subsidence investigation in the urban area of Pistoia (Tuscany Region, central Italy). The work is under the framework of the e-shape project, which has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement 820852. This paper is also supported by the PRIMA programme under grant agreement No 1924, project RESERVOIR. The PRIMA programme is supported by the European Union

    Regional subsidence modelling in Murcia city (SE Spain) using 1-D vertical finite element analysis and 2-D interpolation of ground surface displacements

    Get PDF
    Subsidence is a hazard that may have natural or anthropogenic origin causing important economic losses. The area of Murcia city (SE Spain) has been affected by subsidence due to groundwater overexploitation since the year 1992. The main observed historical piezometric level declines occurred in the periods 1982–1984, 1992–1995 and 2004–2008 and showed a close correlation with the temporal evolution of ground displacements. Since 2008, the pressure recovery in the aquifer has led to an uplift of the ground surface that has been detected by the extensometers. In the present work an elastic hydro-mechanical finite element code has been used to compute the subsidence time series for 24 geotechnical boreholes, prescribing the measured groundwater table evolution. The achieved results have been compared with the displacements estimated through an advanced DInSAR technique and measured by the extensometers. These spatio-temporal comparisons have showed that, in spite of the limited geomechanical data available, the model has turned out to satisfactorily reproduce the subsidence phenomenon affecting Murcia City. The model will allow the prediction of future induced deformations and the consequences of any piezometric level variation in the study area.This work has been supported by the Spanish Ministry of Economy and Competitiveness and EU FEDER funds under projects ESP2013-47780-C2-2-R and TEC2011-28201-C02-02 and by the project 15224/PI/10 from the Regional Agency of Science and Technology in Murcia. The European Space Agency (ESA) Terrafirma project funded all the SAR data processing with the SPN technique

    Geometrical and geotechnical characterization of the earth fissures appeared in the Guadalentín Valley (southeastern Spain) after the September 2012 flooding

    Get PDF
    Two earth fissures appeared in Murcia province (southeastern Spain) after the flood occurred because of a heavy downpour on 28 September 2012. In this area, located within the Guadalentín Valley, up to 212 L m−2 was reported that day. More than 200 agricultural exploitations were destroyed by the flooding, with a devastating effect on many infrastructures, such as a main A-7 highway bridge that collapsed in this event. The earth fissures appeared after this flooding in the towns of Puerto Lumbreras and Totana. The first fissure showed a straight-line direction approximately parallel to the main geological structures of the Guadalentín Valley. The total length of the fissure was 400 m and was 2 to 3 m in depth. The soil in the fissure is classified as a low-plasticity silt with some sand and clay, ML, according to the Unified Soil Classification System. From the sieve and hydrometer tests, the percentage of silt in these samples was between 48 % and 68 %, the clay content between 12 % and 30 % and the sand content between 2 % and 40 %. The plasticity index was smaller than 9.2 for all the samples. To evaluate the piping and internal erosion susceptibility of the soil, pinhole, crumb and geochemical tests were done on the collected samples. A result of non-dispersive soil was obtained from crumb and pinhole tests. Nevertheless, the pH, sodium adsorption ratio and exchangeable sodium percentage tests showed that some samples could be affected by the dispersion of the soil. Also, the collapsible potential of the soil was studied, showing negative results for all the samples except for that collected at the southern end of the fissure, which showed a medium to high potential. Concerning the Totana fissure, it appeared with different branches and holes instead of as a rectilinear pattern. The total length of the fissure was 190 m, with the soil characterized as a silty soil. Lastly, INSAR data, GPS, GPR and land subsidence maps were used to study the possible origin of these fissures.This research has been supported by the Spanish Ministry of Economy and Competitiveness, the State Agency of Research and the European Funds for Regional Development (grant no. TEC2017-85244-C2-1-P), UNESCO (grant no. ICGP641), the Universidad de Alicante (grant no. GRE17-11), and the Universidad de Alicante (grant no. GRE18-15)

    3D groundwater flow and deformation modelling of Madrid aquifer

    Get PDF
    A novel methodological approach to calibrate and validate three-dimensional (3D) finite element (FE) groundwater flow and geomechanical models has been implemented using Advanced Differential Interferometric SAR (A-DInSAR) data. In particular, we show how A-DInSAR data can be effectively used to (1) constrain the model set-up in evaluating the areal influence of the wellfield and (2) characterise the aquifer system, specifically the storage coefficient values, which represents a fundamental step in managing groundwater resources. The procedure has been tested to reconstruct the surface vertical and horizontal movements caused by the Manzanares-Jarama wellfield located northwest of Madrid (Spain). The wellfield was used to supply freshwater during major droughts over the period between 1994 and 2010. Previous A-DInSAR outcomes obtained by ERS-1/2 and ENVISAT acquisitions clearly revealed the seasonality of the land displacements associated to the withdrawal and recovery cycles that characterized the wellfield development. A time-lag of about one month, which is in the order of the time span between two SAR acquisitions, between the hydraulic head changes and the displacements has been detected in this site by a wavelet analysis of A-DInSAR and piezometer time series. The negligible delay between the forcing factor and the system response and the complete subsidence recovery when piezometric head recovers supported the understanding of a minor role played by the pore pressure propagation within clay layers and the almost perfectly elastic behavior of the system (viscosity is negligible), respectively. The developed geomechanical model satisfactorily reproduces the pumping-induced deformations with a Root Mean Square Error (RMSE) between observed and simulated land displacements in the order of 0.1-0.3 mm. The results give insights about the approach benefits in deeply understanding the spatio-temporal aquifer-system response to the management of this strategic water resource for Madrid.The activity has been developed within the scientific collaboration established in the framework of the UNESCO Land Subsidence International Initiative (LaSII - https://www.landsubsidence-unesco.org/). The research was funded by University of Pavia in the framework of a research grant award “assegno di tipo A premiale” for research activities at the Dept. of Earth and Environmental Sciences, within the research project entitled “Sustainable groundwater resources management by integrating A-DInSAR derived monitoring and flow modeling results” assigned to Roberta Bonì in March 2019. This research was partially funded by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO), the State Agency of Research (AEI), and the European Funds for Regional Development (FEDER) under project TEC2017-85244-C2-1-P

    Application of multi-sensor advanced DInSAR analysis to severe land subsidence recognition: Alto Guadalentín Basin (Spain)

    Get PDF
    Multi-sensor advanced DInSAR analyses have been performed and compared with two GPS station measurements, in order to evaluate the land subsidence evolution in a 20-year period, in the Alto Guadalentín Basin where the highest rate of man-induced subsidence (> 10 cm yr−1) of Europe had been detected. The control mechanisms have been examined comparing the advanced DInSAR data with conditioning and triggering factors (i.e. isobaths of Plio-Quaternary deposits, soft soil thickness and piezometric level).This work is financially supported by the DORIS project (Ground Deformation Risk Scenarios: an Advanced Assessment Service) funded by the EC-GMES-FP7 initiative (Grant Agreement 423 no. 242212). ALOS PALSAR images were provided by the project JAXA-1209. Part of this work is supported by the Spanish Government under project TEC2011-28201-C02-02 and TIN2014-55413-C2-2-P and by the project 15224/PI/10 from the Regional Agency of Science and Technology in Murcia. Additional funding was obtained from the Spanish Research Program through the projects AYA2010-17448, ESP2013-47780-C2-1-R and ESP2013-47780-C2-2-Rand by the Ministry of Education, Culture and Sport through the project PRX14/00100

    Understanding the dynamic behaviour for the Madrid aquifer (Spain): insights from the integration of A-DInSAR and 3-D groundwater flow and geomechanical models

    Get PDF
    Advanced Differential Interferometric Synthetic Aperture Radar (A-DInSAR) techniques and 3-D groundwater flow and geomechanical models are integrated to improve our knowledge about the Tertiary detritic aquifer of Madrid (TDAM). In particular, the attention is focused on the Manzanares-Jarama well field, located to the northwest of Madrid, which experienced five cycles of extensive groundwater withdrawal followed by natural recovery, to cope with the droughts occurred in summer 1995, 1999, 2002, 2006, and 2009. Piezometric records and A-DInSAR data acquired by ERS-1/2 and ENVISAT satellites during the periods 1992–2000 and 2002–2010, respectively, have been used to calibrate the groundwater flow and the geomechanical models. A time-lag of about one month between the hydraulic head changes and the displacements of the land surface has been detected by a joint wavelet analysis of A-DInSAR and piezometer head time series. Overall, the results show the effectiveness of the proposed integrated approach composed of A-DInSAR and 3-D geomechanical model to characterize the aquifer-system response during and after the groundwater withdrawal.This research has been supported by the Università degli Studi di Pavia (Assegno di tipo A premiale: “Sustainable groundwater resources management by integrating A-DInSAR derived monitoring and flow modeling results” assigned to Roberta Bonì in March 2019) and the Spanish Ministry of Economy, Industry and Competitiveness (MINECO), the State Agency of Research (AEI), and the European Funds for Regional Development (FEDER) (grant no. TEC2017-85244-C2-1-P)

    Wavelet analysis of land subsidence time-series: Madrid Tertiary aquifer case study

    Get PDF
    Interpretation of land subsidence time-series to understand the evolution of the phenomenon and the existing relationships between triggers and measured displacements is a great challenge. Continuous wavelet transform (CWT) is a powerful signal processing method mainly suitable for the analysis of individual nonstationary time-series. CWT expands time-series into the time-frequency space allowing identification of localized nonstationary periodicities. Complementarily, Cross Wavelet Transform (XWT) and Wavelet Coherence (WTC) methods allow the comparison of two time-series that may be expected to be related in order to identify regions in the time-frequency domain that exhibit large common cross-power and wavelet coherence, respectively, and therefore are evocative of causality. In this work we use CWT, XWT and WTC to analyze piezometric and InSAR (interferometric synthetic aperture radar) time-series from the Tertiary aquifer of Madrid (Spain) to illustrate their capabilities for interpreting land subsidence and piezometric time-series information.This research has been supported by the Spanish Ministry of Economy and Competitiveness, the State Agency of Research and the European Funds for Regional Development (grant no. TEC2017-85244-C2-1-P)
    corecore