74 research outputs found

    Optical testbed for the LISA phasemeter

    Get PDF
    The planned spaceborne gravitational wave detector LISA will allow the detection of gravitational waves at frequencies between 0.1 mHz and 1 Hz. A breadboard model for the metrology system aka the phasemeter was developed in the scope of an ESA technology development project by a collaboration between the Albert Einstein Institute, the Technical University of Denmark and the Danish industry partner Axcon Aps. It in particular provides the electronic readout of the main interferometer phases besides auxiliary functions. These include clock noise transfer, ADC pilot tone correction, inter-satellite ranging and data transfer. Besides in LISA, the phasemeter can also be applied in future satellite geodesy missions. Here we show the planning and advances in the implementation of an optical testbed for the full metrology chain. It is based on an ultra-stable hexagonal optical bench. This bench allows the generation of three unequal heterodyne beatnotes with a zero phase combination, thus providing the possibility to probe the phase readout for non-linearities in an optical three signal test. Additionally, the utilization of three independent phasemeters will allow the testing of the auxiliary functions. Once working, components can individually be replaced with flight-qualified hardware in this setup.DLR/50 OQ 1301Bundesministerium f¨ur Wirtschaft und Technologi

    Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling

    Get PDF
    The laser interferometer space antenna (LISA) is a future space-based interferometric gravitational-wave detector consisting of three spacecraft in a triangular configuration. The interferometric measurements of path length changes between satellites will be performed on optical benches in the satellites. Angular misalignments of the interfering beams couple into the length measurement and represent a significant noise source. Imaging systems will be used to reduce this tilt-to-length coupling. We designed and constructed an optical test bed to experimentally investigate tilt-to-length coupling. It consists of two separate structures, a minimal optical bench and a telescope simulator. The minimal optical bench comprises the science interferometer where the local laser is interfered with light from a remote spacecraft. In our experiment, a simulated version of this received beam is generated on the telescope simulator. The telescope simulator provides a tilting beam, a reference interferometer and an additional static beam as a phase reference. The tilting beam can either be a flat-top beam or a Gaussian beam. We avoid tilt-to-length coupling in the reference interferometer by using a small photo diode placed at an image of the beam rotation point. We show that the test bed is operational with an initial measurement of tilt-to-length coupling without imaging systems. Furthermore, we show the design of two different imaging systems whose performance will be investigated in future experiments

    Optical suppression of tilt-to-length coupling in the LISA long-arm interferometer

    Get PDF
    The arm length and the isolation in space enable the Laser Interferometer Space Antenna (LISA) to probe for signals unattainable on the ground, opening a window to the subhertz gravitational-wave universe. The coupling of unavoidable angular spacecraft jitter into the longitudinal displacement measurement, an effect known as tilt-to-length (TTL) coupling, is critical for realizing the required sensitivity of picometer / √ Hz . An ultrastable interferometer test bed has been developed in order to investigate this issue and validate mitigation strategies in a setup representative of LISA and in this paper it is operated in the long-arm interferometer configuration. The test bed is fitted with a flat-top beam generator to simulate the beam received by a LISA spacecraft. We demonstrate a reduction of TTL coupling between this flat-top beam and a Gaussian reference beam via the introduction of two- and four-lens imaging systems. TTL coupling factors below ± 25 μ m / rad for beam tilts within ± 300 μ rad are obtained by careful optimization of the system. Moreover, we show that the additional TTL coupling due to lateral-alignment errors of elements of the imaging system can be compensated by introducing lateral shifts of the detector and vice versa. These findings help validate the suitability of this noise-reduction technique for the LISA long-arm interferometer

    Fecal Metabolome and Bacterial Composition in Severe Obesity:Impact of Diet and Bariatric Surgery

    Get PDF
    The aim of this study was to monitor the impact of a preoperative low-calorie diet and bariatric surgery on the bacterial gut microbiota composition and functionality in severe obesity and to compare sleeve gastrectomy (SG) versus Roux-en-Y gastric bypass (RYGB). The study also aimed to incorporate big data analysis for the omics results and machine learning by a Lasso-based analysis to detect the potential markers for excess weight loss. Forty patients who underwent bariatric surgery were recruited (14 underwent SG, and 26 underwent RYGB). Each participant contributed 4 fecal samples (baseline, post-diet, 1 month after surgery and 3 months after surgery). The bacterial composition was determined by 16S rDNA massive sequencing using MiSeq (Illumina). Metabolic signatures associated to fecal concentrations of short-chain fatty acids, amino acids, biogenic amines, gamma-aminobutyric acid and ammonium were determined by gas and liquid chromatography. Orange 3 software was employed to correlate the variables, and a Lasso analysis was employed to predict the weight loss at the baseline samples. A correlation between Bacillota (formerly Firmicutes) abundance and excess weight was observed only for the highest body mass indexes. The low-calorie diet had little impact on composition and targeted metabolic activity. RYGB had a deeper impact on bacterial composition and putrefactive metabolism than SG, although the excess weight loss was comparable in the two groups. Significantly higher ammonium concentrations were detected in the feces of the RYGB group. We detected individual signatures of composition and functionality, rather than a gut microbiota characteristic of severe obesity, with opposing tendencies for almost all measured variables in the two surgical approaches. The gut microbiota of the baseline samples was not useful for predicting excess weight loss after the bariatric process

    DNA methylome analysis identifies accelerated epigenetic aging associated with postmenopausal breast cancer susceptibility

    Get PDF
    Aim of the study A vast majority of human malignancies are associated with ageing, and age is a strong predictor of cancer risk. Recently, DNA methylation-based marker of ageing, known as ‘epigenetic clock’, has been linked with cancer risk factors. This study aimed to evaluate whether the epigenetic clock is associated with breast cancer risk susceptibility and to identify potential epigenetics-based biomarkers for risk stratification. Methods Here, we profiled DNA methylation changes in a nested case–control study embedded in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort (n = 960) using the Illumina HumanMethylation 450K BeadChip arrays and used the Horvath age estimation method to calculate epigenetic age for these samples. Intrinsic epigenetic age acceleration (IEAA) was estimated as the residuals by regressing epigenetic age on chronological age. Results We observed an association between IEAA and breast cancer risk (OR, 1.04; 95% CI, 1.007–1.076, P = 0.016). One unit increase in IEAA was associated with a 4% increased odds of developing breast cancer (OR, 1.04; 95% CI, 1.007–1.076). Stratified analysis based on menopausal status revealed that IEAA was associated with development of postmenopausal breast cancers (OR, 1.07; 95% CI, 1.020–1.11, P = 0.003). In addition, methylome-wide analyses revealed that a higher mean DNA methylation at cytosine-phosphate-guanine (CpG) islands was associated with increased risk of breast cancer development (OR per 1 SD = 1.20; 95 %CI: 1.03–1.40, P = 0.02) whereas mean methylation levels at non-island CpGs were indistinguishable between cancer cases and controls. Conclusion Epigenetic age acceleration and CpG island methylation have a weak, but statistically significant, association with breast cancer susceptibility

    Estimated substitution of tea or coffee for sugar-sweetened beverages was associated with lower type 2 diabetes incidence in case-cohort analysis across 8 European countries in the epic-interact study.

    Get PDF
    INTRODUCTION: Beverage consumption is a modifiable risk factor for type 2 diabetes (T2D), but there is insufficient evidence to inform the suitability of substituting 1 type of beverage for another. OBJECTIVE: The aim of this study was to estimate the risk of T2D when consumption of sugar-sweetened beverages (SSBs) was replaced with consumption of fruit juice, milk, coffee, or tea. METHODS: In the European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct case-cohort study of 8 European countries (n = 27,662, with 12,333 cases of incident T2D, 1992-2007), beverage consumption was estimated at baseline by dietary questionnaires. Using Prentice-weighted Cox regression adjusting for other beverages and potential confounders, we estimated associations of substituting 1 type of beverage for another on incident T2D. RESULTS: Mean ± SD of estimated consumption of SSB was 55 ± 105 g/d. Means ± SDs for the other beverages were as follows: fruit juice, 59 ± 101 g/d; milk, 209 ± 203 g/d; coffee, 381 ± 372 g/d; and tea, 152 ± 282 g/d. Substituting coffee for SSBs by 250 g/d was associated with a 21% lower incidence of T2D (95% CI: 12%, 29%). The rate difference was -12.0 (95% CI: -20.0, -5.0) per 10,000 person-years among adults consuming SSBs ≥250 g/d (absolute rate = 48.3/10,000). Substituting tea for SSBs was estimated to lower T2D incidence by 22% (95% CI: 15%, 28%) or -11.0 (95% CI: -20.0, -2.6) per 10,000 person-years, whereas substituting fruit juice or milk was estimated not to alter T2D risk significantly. CONCLUSIONS: These findings indicate a potential benefit of substituting coffee or tea for SSBs for the primary prevention of T2D and may help formulate public health recommendations on beverage consumption in different populations

    The Gravitational Universe

    Get PDF
    The last century has seen enormous progress in our understanding of the Universe. We know the life cycles of stars, the structure of galaxies, the remnants of the big bang, and have a general understanding of how the Universe evolved. We have come remarkably far using electromagnetic radiation as our tool for observing the Universe. However, gravity is the engine behind many of the processes in the Universe, and much of its action is dark. Opening a gravitational window on the Universe will let us go further than any alternative. Gravity has its own messenger: Gravitational waves, ripples in the fabric of spacetime. They travel essentially undisturbed and let us peer deep into the formation of the first seed black holes, exploring redshifts as large as z ~ 20, prior to the epoch of cosmic re-ionisation. Exquisite and unprecedented measurements of black hole masses and spins will make it possible to trace the history of black holes across all stages of galaxy evolution, and at the same time constrain any deviation from the Kerr metric of General Relativity. eLISA will be the first ever mission to study the entire Universe with gravitational waves. eLISA is an all-sky monitor and will offer a wide view of a dynamic cosmos using gravitational waves as new and unique messengers to unveil The Gravitational Universe. It provides the closest ever view of the early processes at TeV energies, has guaranteed sources in the form of verification binaries in the Milky Way, and can probe the entire Universe, from its smallest scales around singularities and black holes, all the way to cosmological dimensions

    The Gravitational Universe

    No full text
    The last century has seen enormous progress in our understanding of the Universe. We know the life cycles of stars, the structure of galaxies, the remnants of the big bang, and have a general understanding of how the Universe evolved. We have come remarkably far using electromagnetic radiation as our tool for observing the Universe. However, gravity is the engine behind many of the processes in the Universe, and much of its action is dark. Opening a gravitational window on the Universe will let us go further than any alternative. Gravity has its own messenger: Gravitational waves, ripples in the fabric of spacetime. They travel essentially undisturbed and let us peer deep into the formation of the first seed black holes, exploring redshifts as large as z ~ 20, prior to the epoch of cosmic re-ionisation. Exquisite and unprecedented measurements of black hole masses and spins will make it possible to trace the history of black holes across all stages of galaxy evolution, and at the same time constrain any deviation from the Kerr metric of General Relativity. eLISA will be the first ever mission to study the entire Universe with gravitational waves. eLISA is an all-sky monitor and will offer a wide view of a dynamic cosmos using gravitational waves as new and unique messengers to unveil The Gravitational Universe. It provides the closest ever view of the early processes at TeV energies, has guaranteed sources in the form of verification binaries in the Milky Way, and can probe the entire Universe, from its smallest scales around singularities and black holes, all the way to cosmological dimensions
    corecore