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Abstract 

Aim of the study. A vast majority of human malignancies are associated with aging 

and age is a strong predictor of cancer risk. Recently, DNA methylation-based marker of 

aging, known as “epigenetic clock”, has been linked with cancer risk factors. This study 

aimed to evaluate whether the epigenetic clock is associated with breast cancer risk 

susceptibility   and   to   identify   potential   epigenetics-based   biomarkers   for   risk 

stratification. 

Methods. Here, we profiled DNA methylation changes in a nested case-control study 

embedded in the European Prospective Investigation into Cancer and Nutrition (EPIC) 

cohort (n=960) using the Illumina HumanMethylation 450K BeadChip arrays and used 

the Horvath age estimation method to calculate epigenetic age for these samples. 

Intrinsic epigenetic age acceleration (IEAA) was estimated as the residuals by regressing 

epigenetic age on chronological age. 

Results. We observed an association between IEAA and breast cancer risk (OR, 1.04; 

95% CI, 1.007-1.076, P= 0.016). One unit increase in IEAA was associated with a 4% 

increased odds of developing breast cancer (OR, 1.04; 95% CI, 1.007-1.076). Stratified 

analysis based on menopausal status revealed that IEAA was associated with 

development of postmenopausal breast cancers (OR, 1.07; 95% CI, 1.020-1.11, P=0.003). 

In addition, methylome-wide analyses revealed a higher mean DNA methylation at CpG 

islands was associated with increased risk of breast cancer development (OR per 1 

SD =1.20; 95 %CI: 1.03-1.40, P=0.02) whereas mean methylation levels at non island 

CpGs were indistinguishable between cancer cases and controls. 

Conclusion. Epigenetic age acceleration and CpG island methylation has a weak but 

statistically significant association with breast cancer susceptibility. 
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Highlights 

- Genome-wide  DNA  methylation  in blood was  measured  in  a large nested  case-

control study of breast cancer 

- Epigenetic age acceleration is associated with risk of postmenopausal breast cancer 

- Higher  CpG  island  methylation  leads  to  increased  risk  of  developing  breast cancer 

 

Keywords: DNA methylation; epigenomics; age acceleration; breast cancer; biomarkers; 

prospective studies  
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Introduction 1 

Aging is a major risk factor for most neoplasms (1). In particular, breast cancer is an age-2 

associated disease whose incidence raises sharply after menopause (1). This 3 

increased risk was proposed to be the consequence of accumulation of genetic changes 4 

(mutations) associated with deregulation of cellular processes and genomic instability. 5 

However, accumulation of genetic changes exhibits striking inter-individual differences 6 

(2), and differences in biological aging processes may only be partly explained by genetic 7 

determinants (3). 8 

 9 

A recent study demonstrates that DNA methylation data lend themselves for developing a 10 

highly accurate multi-tissue biomarker of aging (4). The DNA methylation-based marker 11 

of aging (known as “epigenetic clock”) derived from  several tissues can be used to 12 

accurately estimate the chronological age of all tissues and cell types (4). This 13 

composite biomarker of aging, which is defined as a weighted average across 353 14 

specific CpG sites, produces and estimate of age (in units of years), referred to as 15 

"epigenetic age" or  "DNA methylation age" (DNAm age)". Recent studies demonstrate 16 

that DNAm age is at least a passive biomarker of biological age: the epigenetic age of 17 

blood has been found to be predictive of all-cause mortality (5-9), frailty (10), cognitive 18 

and physical functioning (5). Further, the utility of the epigenetic clock method using 19 

various tissues and organs has been demonstrated in applications surrounding 20 

Alzheimer's disease (11), centenarian status (8), prenatal and early life influences (12), 21 

Down syndrome (13), HIV infection (14), Huntington's disease (15), obesity (16), lifetime 22 

stress (17), menopause (18), and Parkinson's disease (19). Departures of methylation-23 

estimated age from chronological age can be used to define intrinsic epigenetic age 24 
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acceleration (IEAA) that measures cell-intrinsic aging effects that are independent of 1 

chronological age and blood cell composition.  2 

A recent study suggests that IEAA can be used to predict lung cancer risk (20). However, 3 

it is not yet known whether IEAA lends itself for predicting breast cancer susceptibility in a 4 

prospective case-control study. To test this hypothesis, we analyzed blood 5 

methylation data from incident breast cancer cases and matching controls of a large 6 

prospective study within the European Prospective Investigation into Cancer and 7 

Nutrition (EPIC) cohort. 8 

 9 
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Materials and Methods 1 

Selection of incident cancer and control participants 2 

The present study was conducted on nested case-control samples from the European 3 

Prospective Investigation into Cancer and Nutrition (EPIC) cohort, a large prospective 4 

study conducted in 23 centers across 10 European countries (Denmark, France, 5 

Germany, Greece, Italy, Norway, Spain, Sweden, The Netherlands, and the UK), aiming 6 

to investigate the relationship between diet, lifestyle, metabolism and cancer risk (21). In 7 

brief, the EPIC cohort includes a total of about 315,000 women and 200,000 men. At 8 

baseline recruitment, all study participants provided extensive questionnaire information 9 

about nutrition and other lifestyle factors. All study participants also provided a blood 10 

sample, which was processed, divided into aliquots of plasma, serum and buffy coat and 11 

frozen at -196°C (under liquid nitrogen) for later use in specific research projects. In all 12 

EPIC centers an identical protocol for subject recruitment, sample collection and storage 13 

was followed. Detailed information on the subject recruitment, baseline data, and blood 14 

collection protocols have been reported previously ( 2 2 ) . All participants gave written, 15 

informed consent for data and biospecimen collection and storage, as well as follow-16 

up. The study was approved by the local ethics committees and the Institutional Review 17 

Board of the International Agency for Research on Cancer (IARC, Lyon, France). 18 

During prospective follow-up of the EPIC cohort, a very large number (>11,000) of newly 19 

diagnosed, invasive breast cancer cases were confirmed  histologically  or  cytologically  20 

as  primary  breast  cancers according to the International Classification of Diseases for 21 

Oncology, Second Edition (ICD-O-2) and included all breast cancer subsites (ICD C50.0-22 

C50.9). A representative sub-set of these cases was used for studies comparing a variety 23 

of biomarker measurements with a set of control subjects, matching the cases by 24 
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recruitment centre. Incident patients with cancer were identified at regular intervals 1 

through population-based cancer registries (in Denmark, Italy except Naples, the 2 

Netherlands, Norway, Spain, Sweden, and the United Kingdom) or by active follow-up 3 

(France, Germany, Greece, and Naples), which involved a combination of methods, 4 

including a review of health insurance records, cancer and pathology registries, and direct 5 

contact with participants and their next-of-kin. 6 

 7 

For the purpose of this study, we included 960 females from the EPIC cohort including 8 

480 incident breast cancer cases.  Our main criteria for selection of case/control pairs 9 

included: (i) a balanced representation of the main subtypes of breast cancer, and (ii) 10 

representation of recruiting centres. One control participant was randomly assigned for 11 

each patient with breast cancer from appropriate risk sets consisting of all cohort 12 

participants alive and free of cancer (except non-melanoma skin cancer) at the time of 13 

diagnosis (and hence, age) of the index case. Matching criteria were: center, length of 14 

follow-up, age at blood collection (3 months relaxed up to 2 years  for sets without 15 

available controls), time of blood collection, fasting status, menopausal status, menstrual 16 

cycle day and current use of contraceptive pill/ hormone replacement therapy. 17 

 18 

Twenty  technical  replicates  were  included  to  compare  inter  and  intra-array  batch 19 

variation. Technical replicates and 38 samples or their matched counterparts which failed 20 

the quality control criteria were excluded from the analysis leaving 902 participants (451 21 

controls and 451 cases) (Table1). 22 

 23 

Bisulfite conversion and genome-wide DNA methylation analysis 24 
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The DNA was isolated as per the standard DNA extraction procedure from the from the 1 

buffy coat samples (Autopure LS, Qiagen). DNA methylome profiling was carried out 2 

using Illumina Infinium HumanMethylation450 (HM450) as previously described (23). 3 

 4 

Bioinformatics analysis 5 

Data pre-processing and analyses were performed using R 3.2.3 (https://www.r-6 

project.org/) and Bioconductor 3.2 (24) as described before (23). DNA methylation level 7 

was described as a β value, which is a continuous variable ranging between 0 (no 8 

methylation) and 1 (full methylation). To avoid spurious associations, we excluded the 9 

cross-reactive probes and probes overlapping with a known single nucleotide 10 

polymorphism (SNPs) with an allele frequency of at least 5% in the overall population 11 

(European ancestry, (25)), leaving 423,066 probes. In any given sample, probes with a 12 

detection P-value (a measure of an individual probe's performance) of more than 0.05 13 

were assigned missing status. If a probe was missing in more than 5% of samples, it was 14 

excluded from all samples. According to this criterion, we excluded 1483 probe, leaving 15 

421,583 probes available for the analyses. We applied color bias correction followed by 16 

quantile and beta-mixture quantile normalization (BMIQ) to align Type I and Type II probe 17 

distributions (26). 18 

 19 

White blood cell count estimates 20 

Quantile normalized data were used to infer blood cell proportions. We estimate blood cell 21 

counts using two different software tools. First, Houseman's estimation method (27) was 22 

used to estimate the proportions of CD8+ T cells, CD4+ T, natural killer, B cells, and 23 

granulocytes (also known as polymorphonuclear leukocytes). Second, the advanced 24 

analysis option of the epigenetic clock software (4, 14) was used to estimate the 25 

https://www.r-project.org/
https://www.r-project.org/
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percentage of exhausted CD8+ T cells (defined as CD28-CD45RA-) and the number 1 

(count) of naïve CD8+ T cells (defined as CD45RA+CCR7+). We and others have shown 2 

that the estimated blood cell counts have moderately high correlations with corresponding 3 

flow cytometric measures (27, 28). For example, flow cytometric measurements correlate 4 

strongly with DNA methylation based estimates: r=0.63 for CD8+T cells, r=0.77 for CD4+ 5 

T cells, r=0.67 for B cell, r=0.68 for naïve CD8+ T cell, r=0.86 for naïve CD4+ T, and 6 

r=0.49 for exhausted CD8+ T cells (28). 7 

 8 

Global and mean methylation analysis 9 

For the global DNA methylation analyses, mean methylation of the DNA methylation 10 

probes (421,583) was calculated for cases and control samples. Human cancers are 11 

characterized by global hypomethylation and a loci-specific DNA hypermethylation (29). 12 

We hypothesized that DNA methylation of probes would vary based on their physical 13 

location. To this end, the probes were classified into different categories either reflecting 14 

their physical location in relation to CpG islands (island, shore, shelf and open sea) or 15 

based on a functional criterion (DP: distal promoter, DS: distal sequence, GB: gene body, 16 

IG: intergenic, and PP: proximal promoter) as previously described (30). A CpG shore is 17 

defined as the area 2 kb on either side of the CpG island, and a CpG shelf is defined as 18 

the area 2 kb outside of the CpG shore (31, 32). while the regions in the genome 19 

containing isolated CpG sites outside CpG islands, shores and shelves, that do not have 20 

a specific designation are referred to as open seas (33). 21 

Epigenetic clock of aging 22 

The epigenetic clock is a prediction method of chronological age based on the DNA 23 

methylation levels of 353 CpGs (4). The predicted (estimated) age resulting from the 24 

epigenetic clock is referred to as "DNA methylation age". Epigenetic age acceleration is 25 
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defined as the DNAm age left unexplained by chronological age where intrinsic denotes a 1 

modification to this concept. In addition to adjusting for chronologic age, IEAA also 2 

adjusts the DNAm age estimate for blood cell count estimates, arriving at a measure that 3 

is unaffected by both variation in chronologic age and blood cell composition. 4 

We focused on IEAA in our blood based methylation study since this measure of age 5 

acceleration is significantly correlated with epigenetic age acceleration in (non-malignant) 6 

female breast tissue (9).   7 

Formally, IEAA is defined by regressing DNAm  age on chronological age and seven 8 

measures of blood cell count abundances (naive CD8 T cells, exhausted CD8 T cells 9 

(defined as CD28-CD45RA-), plasma blasts, CD4 T cells, NK cells, monocytes, 10 

granulocytes. IEAA is automatically calculated using the advanced analysis option of the 11 

epigenetic clock software (where IEAA is denoted as "AAHOAdjCellCounts").  By 12 

definition, IEAA is not correlated with chronological age or blood cell counts. A positive or 13 

negative value of IEAA indicates that the woman is older or younger than expected based 14 

on chronological age at the time of the blood draw. 15 

 16 

Statistical analysis 17 

For the mean methylation analysis, average methylation over all probes within each 18 

category was calculated and the odds ratios (per one standard deviation of global 19 

methylation) were estimated by conditional logistic regression model with case-control 20 

status as the outcome and the epigenome-wide methylation measurement as continuous 21 

predictor adjusting for surrogate variables (technical batch effects such as sample plate, 22 

array chips), alcohol consumption (g/day) and body mass index (as continuous variable). 23 
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Odds ratios (ORs) for breast cancer and 95% CIs were calculated by using logistic 1 

regression for IEAA. Initial analysis was done using unconditional logistic regression to 2 

allow  calculation  of  OR.  Multivariate  logistic  regression  was  performed  by  including 3 

known breast cancer risk factors including alcohol consumption (g/day), full term 4 

pregnancy (ever/ never),   body  mass   index   (as   continuous   variable   and   as   5 

categorical   variable: underweight, normal, overweight and obese), level of education 6 

(none, primary, technical/profession,  secondary,  higher  education),  age  at  menarche,  7 

Cambridge physical activity index (inactive, moderately inactive, moderately active and 8 

active) stratified by clustering variable. A stratified multivariate conditional logistic 9 

regression analysis based on the menopausal status was performed using the 10 

aforementioned models. 11 
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Results 1 

Baseline characteristics 2 

The baseline characteristics of samples at the time of recruitment are listed in Table 1. 3 

Women were between 26 and 73 years of age with a mean age of 52.3 years for cases 4 

and controls. The majority of breast cancer cases were hormone receptor (ER and PR) 5 

positive (83%) while 17% of the breast cancers were triple negative (Table 1). There was 6 

a very high correlation between the intra- and inter-plate technical replicates (average 7 

correlation coefficient r2=0.98 and 0.97, respectively, data not shown). 8 

 9 

Hypermethylation of CpG islands is associated with breast cancer risk 10 

We compared the global mean methylation across 421,583 probes and observed no 11 

difference  between  prospectively  collected  cases  and  matched  controls  (51.82%  vs 12 

51.86%, P =0.68). Our analysis showed that each unit (95% CI/1SD, 1.03-1.40, P=0.02) 13 

increase in methylation at CpG islands sites increased the risk of being a case by 20% 14 

(Table  2).  While  P<  0.05,  it  should  be  noted  that  the  results  would  be  marginally 15 

significant allowing for 4 sub-sets (CpG islands, CGI shores, CGI shelves, and open sea). 16 

No change in breast cancer risk was observed for other regions (shore, shelf and open 17 

sea) (Table 2), nor did we find an association of individual CpG site or region with breast 18 

cancer status. 19 

 20 

Postmenopausal breast cancer cases exhibit DNA methylation age acceleration 21 

Epigenetic age had a strong positive correlation with chronological age in both case and 22 

control  samples  (Figure  1a).  We  observed  a marginally significant difference  in  age  23 

acceleration  between prospective cases compared to matched controls (Figure 1b, 24 
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P=0.05, Supplementary Figure 1). Stratified analysis based on  time from blood  1 

collection  to  disease  diagnosis  revealed  that  prospective breast cancers exhibited age 2 

acceleration 10 years prior to diagnosis compared to matched control samples (Figure 3 

1c, P=0.01). 4 

A conditional logistic regression model that relates breast cancer status to IEAA showed 5 

that IEAA was associated (Table 3) with breast cancer status. The results were not 6 

attenuated after adjusting for known breast cancer factors (Supplementary Table 1). 7 

Each unit increase in IEAA led to 4% increased odds of being a breast cancer case (OR, 8 

1.04; 95% CI, 1.007-1.076, P = 0.016) (Table 3). IEAA follows an approximately normal 9 

distribution with mean zero, variance=28.2, standard deviation of 5.31. The following 10 

quantiles describe the empirical distribution of IEAA: minimum= -24.2, maximum 24.4, 11 

median=-0.12, first quartile=-3.0, third quartile=3.0). Thus, 25% of women had an IEAA 12 

value >3. 13 

A very high value of IEAA=10 is associated with a doubling of odds of developing 14 

postmenopausal breast cancer (OR=1.97 calculated as 1.06^10 from our multivariate 15 

logistic regression model Table 3). Twenty five percent of all women exhibit an age 16 

acceleration larger than 3 which is associated with 22% increase in the odds of 17 

developing postmenopausal breast cancer (OR=1.22=1.07^3). 18 

None of the blood cell count measures were associated with disease status in 19 

prediagnostic blood samples (Supplementary Figure 2). Interestingly, high physical 20 

activity was associated with decreased odds of being a breast cancer case 21 

(Supplementary Table 1). 22 

A recent study demonstrated that menopause has a weak but statistically significant effect 23 

on epigenetic age acceleration. Further, menopause has been known to accelerate age-24 
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related diseases including breast cancer (34, 35). To adjust for menopausal status, we 1 

evaluated the association between IEAA and breast cancer in separate strata defined by 2 

menopausal status (premenopausal and postmenopausal). The baseline characteristics of 3 

premenopausal and postmenopausal breast samples are shown in Supplementary Table 4 

2. We observed a positive correlation between epigenetic and chronological age in 5 

postmenopausal samples (Figure 2a). Stratified analysis of postmenopausal breast 6 

cancers based on the lead-time between blood collection and cancer diagnosis revealed 7 

that breast cancers had a higher IEAA compared to non-cancer samples (Figure 2b, 8 

Supplementary Figure 3). 9 

We found that breast cancer that developed within 10 years from date of recruitment 10 

had a stronger association with IEAA (Figure 2c). However, the results of this 11 

secondary analysis should be interpreted with caution due to an inflated false positive rate 12 

resulting from multiple comparisons. We did not observe such associations in 13 

premenopausal breast samples (Supplementary Figure 4, Supplementary Figure 5). 14 

Similar to our findings in all breast samples high physical activity was associated with 15 

decreased  odds  of  being  a  breast  cancer  case  in  postmenopausal  women 16 

(Supplementary Table 3). 17 

Interestingly, we observed a highly significant association between IEAA and incident 18 

postmenopausal breast cancers (OR, 1.07; 95% CI, 1.020-1.11, P = 0.003). By 19 

contrast, no signif icant association could be observed for incident 20 

premenopausal breast cancers (OR, 1.00; 95% CI, 0.9510-1.056, P = 0.94) (Table 3). 21 
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Discussion 1 

Using a rigorous and large scale nested prospective case-control study, we demonstrate  2 

a) that intrinsic epigenetic age acceleration in blood is predictive of postmenopausal 3 

breast cancers, and b) that genome-wide hypermethylation in CpG islands is associated 4 

with incident breast cancer cases. While several articles have studied blood methylation 5 

data versus breast  cancer  risk (36-39), it appears that ours is the first study to detect a 6 

weak but significant association with breast cancer susceptibility. Our study stands out 7 

in terms of its large sample size, its use of a robust epigenome wide technology (Illumina 8 

450K array), the careful matching of breast cancer cases with controls in a prospective 9 

case-control study, and its use of a powerful epigenetic biomarker of aging which is 10 

independent of blood cell counts (IEAA). 11 

 12 

Our finding regarding the association between global CpG island methylation levels 13 

and breast  cancer  risk is congruent with  the  findings  from  our  earlier retrospective 14 

study on breast cancer (39) and supports the notion that regulatory regions   of   the   15 

genome   are   often   hypermethylated   in   cancer  cells (29).   But it is noteworthy 16 

that we observed CpG island hypermethylation in blood tissue samples of 17 

incident breast cancer patients. Several epidemiologic case–control studies have 18 

reported global genomic hypomethylation in peripheral blood of cancer patients, 19 

suggesting a systemic effect of hypomethylation on disease predisposition (40, 41). In 20 

addition, two recent studies reported a lower global methylation levels in prospectively 21 

collected blood samples from breast cancer cases compared to controls (38, 42). 22 

However, we did not find any change in global DNA methylation levels between cases 23 
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and controls. These discrepancies may be due to technical and biological variations 1 

attributable to the low power of the studies. 2 

Epigenetic changes are ubiquitous in primary breast cancers, although the role of 3 

deregulation of the epigenome is largely unknown. It has been suggested that a gradual 4 

accumulation of methylation changes (“epigenetic drift”) may occur through stochastic 5 

events, resulting in clonal expansion of the stem/progenitor cells, and that this process 6 

may contribute to the age-associated increase in risk of developing breast cancer ( 4 3 -7 

4 5 ) . DNA methylation age is highly correlated to chronological age across sorted cell 8 

types (CD4 T cells, monocytes, B cells, glial cells, neurons), complex tissues (e.g. blood) 9 

and organs (brain, breast, kidney, liver, lung) (4). Our findings were consistent with the 10 

previous studies in different tissues (4, 16). The epigenetic clock derived from the DNA 11 

methylation age is robust with respect to the batch effects and can be applied to all 12 

Illumina array platforms: the EPIC chip (850K), the Illumina 450K array and the 27K array 13 

(4) and possibly measures a cell intrinsic and tissue independent epigenetic drift (46). For 14 

blood derived DNA measured on the Illumina 450K array, the epigenetic clock algorithm 15 

provides not only several measures of age acceleration but also estimates of blood cell 16 

counts. One of the major concerns regarding age-associated DNA methylation signatures 17 

is the influence of tissue’s cellular composition which may alter with age. We found no 18 

differences in leukocyte subpopulations between cases and controls. By definition, our 19 

intrinsic measure of epigenetic age acceleration (IEAA) is not confounded by changes in 20 

the proportion of blood cell counts (Methods). We focused on IEAA since it has been 21 

shown to be correlated with epigenetic age acceleration in breast tissue (9). Future 22 

research could investigate whether epigenetic age acceleration of breast tissue is 23 

predictive of breast cancer (11). 24 
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We can only speculate when it comes to explaining why IEAA was only predictive of 1 

postmenopausal breast cancer but not of pre-menopausal breast cancer. Breast cancers 2 

developing in postmenopausal women are influenced by specific polymorphisms in 3 

endogenous steroid hormone metabolic   pathways   and   exogenous administration of 4 

hormones at menopause (hormone replacement therapy). Our observed  age  acceleration  5 

in  postmenopausal  breast  cancers  might reflect differences in hormone exposure. In this 6 

context, it is noteworthy that both natural and surgical menopause are associated with an 7 

increase in intrinsic age acceleration (18). In addition, age associated compromised 8 

detoxification, DNA repair mechanisms and immune surveillance may add to the 9 

endogenous factors which could lead to postmenopausal breast cancer development (1). It 10 

is unlikely that smoking and body mass index confound the relationship between 11 

epigenetic age and breast cancer risk because a) body mass index and smoking have 12 

only a very weak effect on the epigenetic age acceleration of blood tissue (correlation 13 

r<0.10) (16, 20), and b) we could detect accelerated aging effects in multivariate 14 

regression models that adjusted for these potential confounders. Our results based on a 15 

prospective study cohort points to a higher rate of aging in the blood samples from 16 

individuals who develop breast cancer compared to the controls. While the results from our 17 

epigenetic age analysis are biologically meaningful, the association between DNA 18 

methylation age and disease risk is probably too weak for prognostic purposes. 19 

In the  present  study  we  demonstrated  that  a  surrogate  tissue  (blood)  captures 20 

accelerated aging effects and relates to an effector (breast cancer) of aging. We have 21 

demonstrated   that   IEAA   was   associated   with   postmenopausal   breast   cancer 22 

susceptibility and identified potential epigenetics-based biomarkers for risk stratification. 23 

Because  menopause  has  been  known  to  accelerate  age-related  diseases  including 24 
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cancer, our finding also suggest potential underlying mechanism and provides biological 1 

plausibility to the association between menopause and cancer risk. Further research 2 

aimed at understanding epigenome deregulation in cancer causation, risk stratification 3 

and the mechanism underlying accelerated epigenetic clock is warranted. 4 

 5 
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Table 1: Characteristics of incident breast cancer and control participants at 

b a s e l i n e  ( i . e . time of blood collection). 

 

 

  All samples 
  Controls (%) Cases (%) 

Sample size  451 451 

Mean methylation (in %)  51.86 51.82 

Age (years)    

 Mean (SD) 52.3 (8.94) 52.3 (8.97) 
 Median 53.4 53.5 

Alcohol consumption 

(g/d) 

Mean(SD) 8.2 (11.82) 10.0 (12.98) 

    

Age at menarche Mean (SD) 12.9 (1.34) 12.7 (1.59) 
    

BMI Mean (SD) 25.5 (4.22) 26.0 (4.72) 

Physical activity 

(Cambridge index) 

   

 Sedentary 99 (22.0) 121 (26.8) 
 Moderately sedentary 187 (41.5) 178 (39.5) 
 Moderately active 76 (16.9) 87 (19.3) 
 Active 78 (17.3) 62 (13.7) 
 Missing 11 (2.4) 3 (0.7) 

Hormone receptor 

status 

   

 ER+/PR+/Her2+
 - 85 (18.8) 

 ER+/PR+/Her2-
 - 290 (64.3) 

 ER-/PR-/Her2-
 - 76 (16.9) 

    

Country    

 Italy 160 (35.5) 160 (35.5) 
 Spain 27 (6.0) 27 (6.0) 
 UK 38 (8.4) 38 (8.4) 
 The Netherlands 66 (14.6) 66 (14.6) 
 Greece 25 (5.5) 25 (5.5) 
 Germany 135 (29.9) 135 (29.9) 

 

 

SD: Standard deviation
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Table  2:  Association  between  global  methylation  and  breast  cancer  risk  by  CpG 

genomic feature per 1 SD of β methylation values in the EPIC study. 

 

 

Context              # CpGs      Std. dev.       OR (95% CI)*       P value 

 All CpG sites 421 583 3.45E-04 1.09 (0.94-1.25) 0.21 

Islands 130 982 5.87E-04 1.20 (1.03-1.40) 0.02 

Open Sea 150 852 4.50E-03 1.49 (0.36-6.24) 0.58 

CpG Shelf 40 948 4.88E-04 0.89 (0.78-1.02) 0.10 

context  

Shore 

 

98 801 

 

5.40E-04 

 

1.00 

 

(0.87-1.16) 

 

0.97 

 Distal promoter 19 990 5.42E-04 1.06 (0.92-1.21) 0.44 

 Distal sequence 7 828 6.68E-04 0.96 (0.84-1.09) 0.52 

Genic Gene Body 168 460 3.80E-04 1.02 (0.89-1.18) 0.76 
context  

Intergenic 

 

56 903 

 

5.35E-04 

 

1.02 

 

(0.89-1.17) 

 

0.76 

 Proximal promoter 168 337 5.26E-04 1.15 (0.99-1.34) 0.07 

 

 

 

* Odds ratio and confidence interval were calculated per 1 standard deviation 

 

*Odds ratios were adjusted for body mass index (continuous variable) and daily alcohol intake. 

OR- Odds ratio, CI: confidence interval
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Table 3: Logistic regression analysis of IEAA versus incident breast cancer status 

 

OR: Odds Ratio; CI: Confidence Interval 

 

IEAA: Intrinsic Epigenetic Age Acceleration 

 

*Odds ratios were adjusted for physical activity (inactive, moderately inactive, moderately active 

and active)

  Univariate analysis 

OR (95% CI) 

Multivariate analysis* 

OR (95% CI) All samples    

 IEAA  1.04 ( 1.007-1.075)  1.04 ( 1.007-1.076) 

Premenopausal samples    

 IEAA 1.00 (0.9572-1.06) 1.00 (0.9510-1.056) 

Postmenopausal samples    

 IEAA  1.06 ( 1.019-1.11)  1.07 ( 1.020-1.11) 
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Figure legends 

Figure 1. Epigenetic clock analysis. 

a) DNA methylation age (y-axis) versus chronological age (x-axis). Points correspond 

to female subjects. Red indicates breast cancer case, black control. The dashed line 

indicates a regression line, b) Epigenetic age acceleration versus breast cancer 

status. Each bar plot depicts the mean value, standard deviation, and reports a non-

parametric group comparison test p-value (Wilcoxon test), c) Epigenetic age 

acceleration versus breast cancer status (developed within 10 years post blood draw). 

Each bar plot depicts the mean value, standard deviation, and reports a non-

parametric group comparison test p-value (Wilcoxon test). 

 

Figure 2. Epigenetic clock analysis for postmenopausal breast samples. 

a) DNA methylation age (y-axis) versus chronological age (x-axis). Points 

correspond to female subjects. Red indicates breast cancer case, black control. The 

dashed line indicates a regression line, b) Epigenetic age acceleration versus breast 

cancer status. Each bar plot depicts the mean value, standard deviation, and reports 

a non-parametric group comparison test p-value (Wilcoxon test), c) Epigenetic age 

acceleration versus breast cancer status (developed within 10 years post blood 

draw). Each bar plot depicts the mean value, standard deviation, and reports a non-

parametric group comparison test p-value (Wilcoxon test).  
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Supplementary Figure (online publication only) 

Supplementary Material 

Supplementary Figure 1: Epigenetic age accelaration of breast samples. 

Epigenetic age accelaration (IEAA) (Y-aixs) versus chronological age. Points correspond to 

female subjects. Red colored circles indicates breast cancer case while the black circles 

represent non-case samples. The solid solid liness indicates a regression lines for cases (in red) 

and non-case samples (in black)s for cases (in red) and non-case samples(in black).  
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Supplementary Figure 21: Distribution of inferred leucocyte cell subpopulation. Proportion of 

leukocyte subtypes derived from DNA methylation data. Inferred data were plotted by sample 

groups (breast cancer cases and controls) where X-axis shows leucocyte subtypes and Y-axis 

shows proportion of estimated leucocytes. 
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Supplementary Ffigure 33: Epigenetic age accelaration of postmenopausal breast 

samples. 

Epigenetic age accelaration (IEAA) (Y-aixs) versus chronological age. Points 

correspond to female subjects. Red colored circles indicates breast cancer case 

while the black circles represent non-case samples. The solid lines indicates a 

regression lines for cases (in red) and non-case samples (in black).The solid lines 

indicates a regression lines for cases (in red) and non-case samples(in black). 
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Supplementary Figure 42: Epigenetic clock analysis for premenopausal breast samples. A) DNAm  

age  (Y-aixs)  versus  chronological  age.  Points  correspond  to  female subjects. Red colored 

circles indicates breast cancer case while the black circles represent non-case samples. The dashed 

line indicates a regression line. B) Epigenetic age accelaration versus breast cancer status. Each 

bar plot depicts the mean value, standard deviation, and reports a non-parametric group test p- 

value (Wilcoxon test). C) Epigenetic age accelaration versus breast cancer status (developed within 

10 years post blood draw). Each bar plot depicts the mean value, standard deviation, and reports a 

non-parametric group comparison test p- value (Wilcoxon test). 
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Supplementary Figure 5: Epigenetic age accelaration of premenopausal breast samples. Epigenetic 

age accelaration (IEAA) (Y-aixs) versus chronological age. Points correspond to female subjects. 

Red colored circles indicates breast cancer case while the black circles represent non-case samples. 

The solid lines indicates a regression lines for cases (in red) and non-case samples(in black). 
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Supplementary Table 1. Conditional logistic regression model of epigenetic age 

acceleration in all samples 

 

 OR (95% CI) P value 

IEAA 1.05 (1.01-1.09) 0.01 

Alcohol at the time of recruitment 

(g/day) 

1.01 (1.00-1.02) 0.06 

Level of education (Ref. No education)   

Primary 1.53 (0.63-3.69) 0.34 
Technical/professional 1.14 (0.44-2.97) 0.79 
Secondary 1.92 (0.72-5.08) 0.19 
Higher education 1.69 (0.63-4.51) 0.29 
Full term pregnancy (Ever/never) 0.96 (0.66-1.41) 0.85 
Physical activity (Cambridge index, Ref. 

inactive) 

  

Moderately inactive 0.71 (0.48-1.06) 0.10 
Moderately active 0.77 (0.48-1.24) 0.29 
Active 0.54 (0.33-0.91) 0.02 
Age at menarche 0.93 (0.85-1.02) 0.14 
BMI (Categorical, Ref. Normal)   

Underweight 0.61 (0.14-2.68) 0.51 
Overweight 1.01 (0.72-1.42) 0.95 
Obese 1.15 (0.75-1.78) 0.52 

 

Conditional logistic regression was performed using known breast cancer risk factors 

highlighted in bold 

IEAA: Intrinsic Epigenetic Age Acceleration 

BMI: Body Mass Index
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Supplementary  Table  2.   Demographic  and  lifestyle  factor  details  of  pre  and 

postmenopausal samples 

Premenopausal samples Postmenopausal samples 

Controls (%) Cases (%) Controls (%) Cases (%) 

Sample size 180 180 259 259 

Demographic and lifestyle factors 

Age (years) 

Mean (SD) 43.6 (4.73) 43.6 (4.74) 58.5 (5.50) 58.5 (5.50) 

Median 43.5 43.4 58.3 58.3 

Smoking 

status Never 

smokers

90 (50.0%) 85 (47.3%) 158 (61.0%) 171 (66.1%) 

Former 

smokers

37 (20.5%) 46 (25.5%) 50 (19.3%) 47 (18.1%) 

Current 

smokers

51 (28.4%) 49 (27.2%) 50 (19.3%) 40 (15.4%) 

Not known 2 (1.1%) - 1 (0.4%) 1 (0.4%) 

Alcohol 

consumption Mean(SD) 8.1(11.06) 10.3 (12.12) 8.1 (12.15) 9.5 (13.55) 

Median 4.4 5.3 3.0 4.0 

Age at 

menarche Mean (SD) 12.9 (1.34) 12.7 (1.59) 13.3 (1.64) 13.3 (1.71) 

Median 13.0 13.0 13.0 13.0 

BMI 

Mean (SD) 24.7 (4.14) 24.8 (4.12) 26.1 (4.25) 26.9 (4.95) 

Median 23.88 23.98 25.56 25.97 

IEAA 

Mean (SD) -0.042 (5.39) 0.079 (5.67) -0.47 (5.16) 0.60 (5.19) 

IEAA: Intrinsic Epigenetic Age Acceleration
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Supplementary  Table  3:  Conditional  logistic  regression  model  of  epigenetic  age 

acceleration in postmenopausal samples 

OR (95% CI) P value 

IEAA 1.08 (1.03-1.13) 0.003 

Alcohol at the time of recruitment 

(g/day)

1.01 (0.99-1.02) 0.424 

Level of education (Ref. No education) 
Primary 2.94 (0.75-11.46) 0.121 
Technical/professional 1.46 (0.34-6.20) 0.609 
Secondary 2.51 (0.57-11.13) 0.226 
Higher education 2.98 (0.67-13.20) 0.151 
Full term pregnancy (Ever/never) 0.94 (0.56-1.58) 0.827 
Physical activity (Cambridge index, Ref. 

inactive)Moderately inactive 0.78 (0.47-1.29) 0.334 
Moderately active 0.51 (0.26-0.99) 0.046 
Active 0.39 (0.19-0.80) 0.011 
Age at menarche 0.98 (0.86-1.11) 0.759 
BMI (Categorical, Ref. Normal) 
Underweight 0.61 (0.05-7.77) 0.707 
Overweight 1.11 (0.71-1.74) 0.653 
Obese 1.08 (0.62-1.88) 0.791 

Conditional logistic regression was performed using known breast cancer risk factors 

highlighted in bold 

IEAA: Intrinsic Epigenetic Age Acceleration 

BMI: Body Mass Index 




