568 research outputs found
Bayesian multitask inverse reinforcement learning
We generalise the problem of inverse reinforcement learning to multiple
tasks, from multiple demonstrations. Each one may represent one expert trying
to solve a different task, or as different experts trying to solve the same
task. Our main contribution is to formalise the problem as statistical
preference elicitation, via a number of structured priors, whose form captures
our biases about the relatedness of different tasks or expert policies. In
doing so, we introduce a prior on policy optimality, which is more natural to
specify. We show that our framework allows us not only to learn to efficiently
from multiple experts but to also effectively differentiate between the goals
of each. Possible applications include analysing the intrinsic motivations of
subjects in behavioural experiments and learning from multiple teachers.Comment: Corrected version. 13 pages, 8 figure
Advances on Matroid Secretary Problems: Free Order Model and Laminar Case
The most well-known conjecture in the context of matroid secretary problems
claims the existence of a constant-factor approximation applicable to any
matroid. Whereas this conjecture remains open, modified forms of it were shown
to be true, when assuming that the assignment of weights to the secretaries is
not adversarial but uniformly random (Soto [SODA 2011], Oveis Gharan and
Vondr\'ak [ESA 2011]). However, so far, there was no variant of the matroid
secretary problem with adversarial weight assignment for which a
constant-factor approximation was found. We address this point by presenting a
9-approximation for the \emph{free order model}, a model suggested shortly
after the introduction of the matroid secretary problem, and for which no
constant-factor approximation was known so far. The free order model is a
relaxed version of the original matroid secretary problem, with the only
difference that one can choose the order in which secretaries are interviewed.
Furthermore, we consider the classical matroid secretary problem for the
special case of laminar matroids. Only recently, a constant-factor
approximation has been found for this case, using a clever but rather involved
method and analysis (Im and Wang, [SODA 2011]) that leads to a
16000/3-approximation. This is arguably the most involved special case of the
matroid secretary problem for which a constant-factor approximation is known.
We present a considerably simpler and stronger -approximation, based on reducing the problem to a matroid secretary
problem on a partition matroid
Possible liquid immiscibility textures in high-magnesia basalts from the Ventersdorp Supergroup, South Africa
The lowermost succession of lavas in the Proterozoic Ventersdorp Supergroup contains light weathering ocelli up to 15 cm in diameter which occur in layers of a darker weathering volcanic material. Some ocelli appear to merge, and discrete light weathering layers may be the ultimate end-stage of this coalescence. Alternatively, coexisting magmas in the neck of the volcano may have been erupted in varying proportions, and turbulence during flow caused spalling of large drops of the lighter weathering material into the other. Several lines of field evidence suggest that two distinct liquids coexisted and were rapidly quenched after eruption. Chemical data for ocelli and matrix are consistent with the hypothesis of liquid immiscibility. The differences in compositions between the coexisting pairs of liquids are small and it is suggested that the original magmas must have been close to the consulute composition
Constrained Non-Monotone Submodular Maximization: Offline and Secretary Algorithms
Constrained submodular maximization problems have long been studied, with
near-optimal results known under a variety of constraints when the submodular
function is monotone. The case of non-monotone submodular maximization is less
understood: the first approximation algorithms even for the unconstrainted
setting were given by Feige et al. (FOCS '07). More recently, Lee et al. (STOC
'09, APPROX '09) show how to approximately maximize non-monotone submodular
functions when the constraints are given by the intersection of p matroid
constraints; their algorithm is based on local-search procedures that consider
p-swaps, and hence the running time may be n^Omega(p), implying their algorithm
is polynomial-time only for constantly many matroids. In this paper, we give
algorithms that work for p-independence systems (which generalize constraints
given by the intersection of p matroids), where the running time is poly(n,p).
Our algorithm essentially reduces the non-monotone maximization problem to
multiple runs of the greedy algorithm previously used in the monotone case.
Our idea of using existing algorithms for monotone functions to solve the
non-monotone case also works for maximizing a submodular function with respect
to a knapsack constraint: we get a simple greedy-based constant-factor
approximation for this problem.
With these simpler algorithms, we are able to adapt our approach to
constrained non-monotone submodular maximization to the (online) secretary
setting, where elements arrive one at a time in random order, and the algorithm
must make irrevocable decisions about whether or not to select each element as
it arrives. We give constant approximations in this secretary setting when the
algorithm is constrained subject to a uniform matroid or a partition matroid,
and give an O(log k) approximation when it is constrained by a general matroid
of rank k.Comment: In the Proceedings of WINE 201
Measurement of the B-Meson Inclusive Semileptonic Branching Fraction and Electron-Energy Moments
We report a new measurement of the B-meson semileptonic decay momentum
spectrum that has been made with a sample of 9.4/fb of electron-positron
annihilation data collected with the CLEO II detector at the Y(4S) resonance.
Electrons from primary semileptonic decays and secondary charm decays were
separated by using charge and angular correlations in Y(4S) events with a
high-momentum lepton and an additional electron. We determined the semileptonic
branching fraction to be (10.91 +- 0.09 +- 0.24)% from the normalization of the
electron-energy spectrum. We also measured the moments of the electron energy
spectrum with minimum energies from 0.6 GeV to 1.5 GeV.Comment: 36 pages postscript, als available through
http://w4.lns.cornell.edu/public/CLNS/, Submitted to PRD (back-to-back with
preceding preprint hep-ex/0403052
Search for an invisibly decaying Higgs boson in e^+e^- collisions at \sqrt{s} = 183 - 189 GeV
A search for a Higgs boson decaying into invisible particles is performed
using the data collected at LEP by the L3 experiment at centre-of-mass energies
of 183 GeV and 189 GeV. The integrated luminosities are respectively 55.3 pb^-1
and 176.4 pb^-1. The observed candidates are consistent with the expectations
from Standard Model processes. In the hypothesis that the production cross
section of this Higgs boson equals the Standard Model one and the branching
ratio into invisible particles is 100%, a lower mass limit of 89.2 GeV is set
at 95% confidence level
Search for Heavy Neutral and Charged Leptons in e+ e- Annihilation at LEP
A search for exotic unstable neutral and charged heavy leptons as well as for
stable charged heavy leptons is performed with the L3 detector at LEP.
Sequential, vector and mirror natures of heavy leptons are considered. No
evidence for their existence is found and lower limits on their masses are set
Search for Extra Dimensions in Boson and Fermion Pair Production in e+e- Interactions at LEP
Extra spatial dimensions are proposed by recent theories that postulate the
scale of gravity to be of the same order as the electroweak scale. A sizeable
interaction between gravitons and Standard Model particles is then predicted.
Effects of these new interactions in boson and fermion pair production are
searched for in the data sample collected at centre-of-mass energies above the
Z pole by the L3 detector at LEP. In addition, the direct production of a
graviton associated with a Z boson is investigated. No statistically
significant hints for the existence of these effects are found and lower limits
in excess of 1 TeV are derived on the scale of this new theory of gravity
ASTEC -- the Aarhus STellar Evolution Code
The Aarhus code is the result of a long development, starting in 1974, and
still ongoing. A novel feature is the integration of the computation of
adiabatic oscillations for specified models as part of the code. It offers
substantial flexibility in terms of microphysics and has been carefully tested
for the computation of solar models. However, considerable development is still
required in the treatment of nuclear reactions, diffusion and convective
mixing.Comment: Astrophys. Space Sci, in the pres
Measurement of Hadron and Lepton-Pair Production at 130GeV < \sqrt{s} < 189 GeV at LEP
We report on measurements of e+e- annihilation into hadrons and lepton pairs.
The data have been collected with the L3 detector at LEP at centre-of-mass
energies between 130 and 189 GeV. Using a total integrated luminosity of 243.7
pb^-1, 25864 hadronic and 8573 lepton-pair events are selected for the
measurement of cross sections and leptonic forward-backward asymmetries. The
results are in good agreement with Standard Model predictions
- …
