6,253 research outputs found

    Thermal fluctuations in moderately damped Josephson junctions: Multiple escape and retrapping, switching- and return-current distributions and hysteresis

    Get PDF
    A crossover at a temperature T* in the temperature dependence of the width s of the distribution of switching currents of moderately damped Josephson junctions has been reported in a number of recent publications, with positive ds/dT and IV characteristics associated with underdamped behaviour for lower temperatures T<T*, and negative ds/dT and IV characteristics resembling overdamped behaviour for higher temperatures T>T*. We have investigated in detail the behaviour of Josephson junctions around the temperature T* by using Monte Carlo simulations including retrapping from the running state into the supercurrent state as given by the model of Ben-Jacob et al. We develop discussion of the important role of multiple escape and retrapping events in the moderate-damping regime, in particular considering the behaviour in the region close to T*. We show that the behaviour is more fully understood by considering two crossover temperatures, and that the shape of the distribution and s(T) around T*, as well as at lower T<T*, are largely determined by the shape of the conventional thermally activated switching distribution. We show that the characteristic temperatures T* are not unique for a particular Josephson junction, but have some dependence on the ramp rate of the applied bias current. We also consider hysteresis in moderately damped Josephson junctions and discuss the less commonly measured distribution of return currents for a decreasing current ramp. We find that some hysteresis should be expected to persist above T* and we highlight the importance, even well below T*, of accounting properly for thermal fluctuations when determining the damping parameter Q.Comment: Accepted for publication in PR

    Risk Aggregation in the presence of Discrete Causally Connected Random Variables

    Get PDF
    Risk aggregation is a popular method used to estimate the sum of a collection of financial assets or events, where each asset or event is modelled as a random variable. Applications include insurance, operational risk, stress testing, and sensitivity analysis. In practice the sum of a set of random variables involves the use of two well-known mathematical operations: n-fold convolution (for a fixed number n) and N-fold convolution, defined as the compound sum of a frequency distribution N and a severity distribution, where the number of constant n-fold convolutions is determined by N. Where the severity and frequency variables are independent, and continuous, currently numerical solutions such as, Panjer’s recursion, Fast Fourier transforms and Monte Carlo simulation produce acceptable results. However, they have not been designed to cope with new modelling challenges that require hybrid models containing discrete explanatory (regime switching) variables or where discrete and continuous variables are inter-dependent and may influence the severity and frequency in complex, non-linear, ways. This paper de-scribes a Bayesian Factorization and Elimination (BFE) algorithm that performs convo

    Measuring competing explanations of human resource management practices through the Cranet survey: cultural versus institutional explanations

    Get PDF
    This paper assesses the relative and joint impact of cultural and institutional factors on firms' use of “calculative” human resource management practices to determine their separate analytic power. To what extent do institutions and culture structure managerial choice? Previous research has been constrained by not having measures for both cultural and institutional distance. Employing data from 14 European countries taken from the Cranet survey, our findings indicate that institutional, and more specifically, labour relations factors, have more explanatory power than cultural factors

    A multilevel analysis of the use of individual pay-for-performance systems

    Get PDF
    Compensation systems such as individualized pay for performance (I-PFP) schemes for employees represent an important approach to aligning employer-employee interests. However, the adoption of I-PFP is much less common in many countries than in the USA. Employing a multi-level analysis of over 4,000 firms in 26 countries, we explore determinants of its adoption. At the country level we distinguish between cultural and institutional (labor regulation institutions) influences. At the firm level, we distinguish firms that view HR as strategically important and firms that are foreign-owned. On the one hand, our findings indicate that both cultural and institutional effects at country level significantly influence the adoption of I-PFP. On the other hand, senior managers’ agency counts. We find the effect of labor regulation on I-PFP to be mediated by its effects on labor union influence and we find the effects of culture on I-PFP to be entirely mediated by labor regulation and (country level) union influence

    Impact of wild-type and genetically modified Pseudomonas fluorescens on soil enzyme activities and microbial population structure in the rhizosphere of pea

    Get PDF
    The definitive version is available at www.blackwell-synergy.com. Copyright Blackwell Publishing DOI : 10.1046/j.1365-294x.1998.00367.xThe aim of this work was to determine the impact of wild type along with functionally and non-functionally modified Pseudomonas fluorescens strains in the rhizosphere. The wild type F113 strain carried a gene encoding the production of the antibiotic 2,4 diacetylphloroglucinol (DAPG) useful in plant disease control, and was marked with a lacZY gene cassette. The first modified strain was a functional modification of strain F113 with repressed production of DAPG, creating the DAPG negative strain F113 G22. The second paired comparison was a non-functional modification of wild type (unmarked) strain SBW25, constructed to carry marker genes only, creating strain SBW25 EeZY-6KX. Significant perturbations were found in the indigenous bacterial population structure, with the F113, (DAPG+) strain causing a shift towards slower growing colonies (K strategists) compared with the non-antibiotic producing derivative (F113 G22) and the SBW25 strains. The DAPG+ strain also significantly reduced, in comparison with the other inocula, the total Pseudomonas populations but did not affect the total microbial populations. The survival of F113 and F113 G22 were an order of magnitude lower than the SBW 25 strains. The DAPG+ strain caused a significant decrease in the shoot to root ratio in comparison to the control and other inoculants, indicating plant stress. F113 increased soil alkaline phosphatase, phosphodiesterase and aryl sulphatase activities compared to the other inocula, which themselves reduced the same enzyme activities compared to the control. In contrast to this, the -glucosidase, -galactosidase and N-acetyl glucosaminidase activities decreased with the inoculation of the DAPG+ strain. These results indicate that soil enzymes are sensitive to the impact of GMM inoculation.Peer reviewe

    Technical Note: Field experiences using UV/VIS sensors for high-resolution monitoring of nitrate in groundwater

    Get PDF
    peer-reviewedTwo different in situ spectrophotometers are compared that were used in the field to determine nitrate-nitrogen (NO3-N) concentrations at two distinct spring discharge sites. One sensor was a double wavelength spectrophotometer (DWS) and the other a multiple wavelength spectrophotometer (MWS). The objective of the study was to review the hardware options, determine ease of calibration, accuracy, influence of additional substances and to assess positive and negative aspects of the two sensors as well as troubleshooting and trade-offs. Both sensors are sufficient to monitor highly time-resolved NO3-N concentrations in emergent groundwater. However, the chosen path length of the sensors had a significant influence on the sensitivity and the range of detectable NO3-N. The accuracy of the calculated NO3-N concentrations of the sensors can be affected if the content of additional substances such as turbidity, organic matter, nitrite or hydrogen carbonate significantly varies after the sensors have been calibrated to a particular water matrix. The MWS offers more possibilities for calibration and error detection but requires more expertise compared with the DWS.The authors would like to acknowledge the Teagasc Walsh Fellowship scheme for funding the study in Ireland, and the German federal Ministry of Education and Research (BMBF) for sponsoring the SMART-project (grant no. 02WM1079-1086, 02WM1211-1212) for the study in Jordan.Teagasc Walsh Fellowship Programm
    • …
    corecore