Thermal fluctuations in moderately damped Josephson junctions: Multiple
escape and retrapping, switching- and return-current distributions and
hysteresis
A crossover at a temperature T* in the temperature dependence of the width s
of the distribution of switching currents of moderately damped Josephson
junctions has been reported in a number of recent publications, with positive
ds/dT and IV characteristics associated with underdamped behaviour for lower
temperatures T<T*, and negative ds/dT and IV characteristics resembling
overdamped behaviour for higher temperatures T>T*. We have investigated in
detail the behaviour of Josephson junctions around the temperature T* by using
Monte Carlo simulations including retrapping from the running state into the
supercurrent state as given by the model of Ben-Jacob et al. We develop
discussion of the important role of multiple escape and retrapping events in
the moderate-damping regime, in particular considering the behaviour in the
region close to T*. We show that the behaviour is more fully understood by
considering two crossover temperatures, and that the shape of the distribution
and s(T) around T*, as well as at lower T<T*, are largely determined by the
shape of the conventional thermally activated switching distribution. We show
that the characteristic temperatures T* are not unique for a particular
Josephson junction, but have some dependence on the ramp rate of the applied
bias current. We also consider hysteresis in moderately damped Josephson
junctions and discuss the less commonly measured distribution of return
currents for a decreasing current ramp. We find that some hysteresis should be
expected to persist above T* and we highlight the importance, even well below
T*, of accounting properly for thermal fluctuations when determining the
damping parameter Q.Comment: Accepted for publication in PR