25 research outputs found

    A method for real-time classification of insect vectors of mosaic and brown streak disease in cassava plants for future implementation within a low-cost, handheld, in-field multispectral imaging sensor

    Get PDF
    Background The paper introduces a multispectral imaging system and data-processing approach for the identification and discrimination of morphologically indistinguishable cryptic species of the destructive crop pest, the whitefly Bemisia tabaci. This investigation and the corresponding system design, was undertaken in two phases under controlled laboratory conditions. The first exploited a prototype benchtop variant of the proposed sensor system to analyse four cryptic species of whitefly reared under similar conditions. The second phase, of the methodology development, employed a commercial high-precision laboratory hyperspectral imager to recover reference data from five cryptic species of whitefly, immobilized through flash freezing, and taken from across four feeding environments. Results The initial results, for the single feeding environment, showed that a correct species classification could be achieved in 85–95% of cases, utilising linear Partial Least Squares approaches. The robustness of the classification approach was then extended both in terms of the automated spatial extraction of the most pertinent insect body parts, to assist with the spectral classification model, as well as the incorporation of a non-linear Support Vector Classifier to maintain the overall classification accuracy at 88–98%, irrespective of the feeding and crop environment. Conclusion This study demonstrates that through an integration of both the spatial data, associated with the multispectral images being used to separate different regions of the insect, and subsequent spectral analysis of those sub-regions, that B. tabaci viral vectors can be differentiated from other cryptic species, that appear morphologically indistinguishable to a human observer, with an accuracy of up to 98%. The implications for the engineering design for an in-field, handheld, sensor system is discussed with respect to the learning gained from this initial stage of the methodology development

    Sound Symbolism Facilitates Word Learning in 14-Month-Olds

    Get PDF
    Sound symbolism, or the nonarbitrary link between linguistic sound and meaning, has often been discussed in connection with language evolution, where the oral imitation of external events links phonetic forms with their referents (e.g., Ramachandran & Hubbard, 2001). In this research, we explore whether sound symbolism may also facilitate synchronic language learning in human infants. Sound symbolism may be a useful cue particularly at the earliest developmental stages of word learning, because it potentially provides a way of bootstrapping word meaning from perceptual information. Using an associative word learning paradigm, we demonstrated that 14-month-old infants could detect Köhler-type (1947) shape-sound symbolism, and could use this sensitivity in their effort to establish a wordreferent association

    A Low-Frequency Inactivating Akt2 Variant Enriched in the Finnish Population is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk

    Get PDF
    To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting insulin, a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in fasting plasma insulin (FI) levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-hour insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio=1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.Academy of Finland (129293, 128315, 129330, 131593, 139635, 139635, 121584, 126925, 124282, 129378, 258753); Action on Hearing Loss (G51); Ahokas Foundation; American Diabetes Association (#7-12-MN-02); Atlantic Canada Opportunities Agency; Augustinus foundation; Becket foundation; Benzon Foundation; Biomedical Research Council; British Heart Foundation (SP/04/002); Canada Foundation for Innovation; Commission of the European Communities, Directorate C-Public Health (2004310); Copenhagen County; Danish Centre for Evaluation and Health Technology Assessment; Danish Council for Independent Research; Danish Heart Foundation (07-10-R61-A1754-B838-22392F); Danish Medical Research Council; Danish Pharmaceutical Association; Emil Aaltonen Foundation; European Research Council Advanced Research Grant; European Union FP7 (EpiMigrant, 279143; FP7/2007-2013; 259749); Finland's Slottery Machine Association; Finnish Cultural Foundation; Finnish Diabetes Research Foundation; Finnish Foundation for Cardiovascular Research; Finnish Foundation of Cardiovascular Research; Finnish Medical Society; Finnish National Public Health Institute; Finska Läkaresällskapet; Folkhälsan Research Foundation; Foundation for Life and Health in Finland; German Center for Diabetes Research (DZD) ; German Federal Ministry of Education and Research; Health Care Centers in Vasa, Närpes and Korsholm; Health Insurance Foundation (2012B233) ; Helsinki University Central Hospital Research Foundation; Hospital districts of Pirkanmaa, Southern Ostrobothnia, North Ostrobothnia, Central Finland, and Northern Savo; Ib Henriksen foundation; Juho Vainio Foundation; Korea Centers for Disease Control and Prevention (4845–301); Korea National Institute of Health (2012-N73002-00); Li Ka Shing Foundation; Liv och Hälsa; Lundbeck Foundation; Marie-Curie Fellowship (PIEF-GA-2012-329156); Medical Research Council (G0601261, G0900747-91070, G0601966, G0700931); Ministry of Education in Finland; Ministry of Social Affairs and Health in Finland; MRC-PHE Centre for Environment and Health;Municipal Heath Care Center and Hospital in Jakobstad; Närpes Health Care Foundation; National Institute for Health Research (RP-PG-0407-10371); National Institutes of Health (U01 DK085526, U01 DK085501, U01 DK085524, U01 DK085545, U01 DK085584, U01 DK088389, RC2-DK088389, DK085545, DK098032, HHSN268201300046C, HHSN268201300047C, HHSN268201300048C, HHSN268201300049C, HHSN, R01MH107666 and K12CA139160268201300050C, U01 DK062370, R01 DK066358, U01DK085501, R01HL102830, R01DK073541, PO1AG027734, R01AG046949, 1R01AG042188, P30AG038072, R01 MH101820, R01MH090937, P30DK020595, R01 DK078616, NIDDK K24 DK080140, 1RC2DK088389, T32GM007753); National Medical Research Council; National Research Foundation of Korea (NRF-2012R1A2A1A03006155); Nordic Center of Excellence in Disease Genetics; Novo Nordisk; Ollqvist Foundation; OrionFarmos Research Foundation; Paavo Nurmi Foundation; Perklén Foundation; Samfundet Folkhälsan; Signe and Ane Gyllenberg Foundation; Sigrid Juselius Foundation; Social Insurance Institution of Finland; South East Norway Health Authority (2011060); Swedish Cultural Foundation in Finland; Swedish Heart-Lung Foundation; Swedish Research Council; Swedish Research Council (Linné and Strategic Research Grant); The American Federation for Aging Research; The Einstein Glenn Center; The European Commission (HEALTH-F4-2007-201413); The Finnish Diabetes Association; The Folkhälsan Research Foundation; The Påhlssons Foundation; The provinces of Newfoundland and Labrador, Nova Scotia, and New Brunswick; The Sigrid Juselius Foundation; The Skåne Regional Health Authority; The Swedish Heart-Lung Foundation; Timber Merchant Vilhelm Bang’s Foundation; Turku University Foundation; Uppsala University; Wellcome Trust (064890, 083948, 085475, 086596, 090367, 090532, 092447, 095101/Z/10/Z, 200837/Z/16/Z, 095552, 098017, 098381, 098051, 084723, 072960/2/ 03/2, 086113/Z/08/Z, WT098017, WT064890, WT090532, WT098017, 098051, WT086596/Z/08/A and 086596/Z/08/Z). Detailed acknowledgment of funding sources is provided in the Additional Acknowledgements section of the Supplementary Materials
    corecore