72 research outputs found

    A New Species of \u3ci\u3eEuphorbia\u3c/i\u3e Subgenus \u3ci\u3eChamaesyce\u3c/i\u3e Section \u3ci\u3eAlectoroctonum\u3c/i\u3e (Euphorbiaceae) From Limestone Hills of Wayne County, Mississippi

    Get PDF
    As part of a project to document the vascular flora of Wayne County, Mississippi, an unusual Euphorbia, which keys to the Euphorbia corollata complex, was encountered in mature hardwood forests in limestone regions. Unlike typical E. corollata and E. pubentissima, these individuals have long petioles (0.4–1.2 cm), oval to ovate leaves, short stature, small cyathia, small seeds, and a different phenology. In order to test species boundaries, morphological character differences were explored using principal component analysis (PCA), and additional characters were gathered from plastid (rpL16) and nuclear (ITS) DNA data of the unusual individuals as well as of E. corollata, E. pubentissima, and several other species of Euphorbia subgenus Chamaesyce section Alectoroctonum. The PCA indicates that the individuals are morphological outliers, and phylogenetic analyses of the DNA data indicate that the individuals have a unique haplotype different from E. corollata or E. pubentissima and are rather more closely related to E. mercurialina, a species not in the E. corollata complex but which occurs in similar mesic habitat in eastern Tennessee and neighboring Alabama, Georgia, and Kentucky. These data support the hypothesis that these unusual individuals represent a new species. Neither the PCA nor the phylogenetic analysis of DNA data reveals any differences between E. corollata and E. pubentissima

    Use of dietary supplements by cardiologists, dermatologists and orthopedists: report of a survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dietary supplements are regularly used by a majority of the American population, and usage by health professionals is also common. There is considerable interest in usage patterns within the population and in the reasons for using dietary supplements. The "Life...supplemented" Healthcare Professionals 2008 Impact Study (HCP Impact Study) surveyed usage of dietary supplements by physicians in three specialties: cardiology, dermatology, and orthopedics.</p> <p>Methods</p> <p>The HCP Impact Study was conducted online by Ipsos Public Affairs for the Council for Responsible Nutrition (CRN), a trade association of the dietary supplement industry. Respondents were 900 physicians, including 300 each from three specialties - cardiology, dermatology, and orthopedics.</p> <p>Results</p> <p>Fifty-seven percent of cardiologists said they use dietary supplements at least occasionally, as did 75% of dermatologists and 73% of orthopedists. The product most commonly reported to be used was a multivitamin, but over 25% in each specialty said they used omega-3 fatty acids and over 20% said they used some botanical supplements. Regular dietary supplement use was reported by 37% of cardiologists, 59% of dermatologists, and 50% of orthopedists. Seventy-two percent of cardiologists, 66% of dermatologists, and 91% of orthopedists reported recommending dietary supplements to their patients. The primary reason given for recommending dietary supplements to patients was for heart health or lowering cholesterol for the cardiologists; benefits for skin, hair and nails for the dermatologists; and bone and joint health for the orthopedists.</p> <p>Conclusions</p> <p>Reported dietary supplement use was relatively common in this sample of physicians, and when they recommended dietary supplements to patients, they tended to do so for reasons related to their specialty.</p

    Water in Cavity−Ligand Recognition

    Get PDF
    We use explicit solvent molecular dynamics simulations to estimate free energy, enthalpy, and entropy changes along the cavity-ligand association coordinate for a set of seven model systems with varying physicochemical properties. Owing to the simplicity of the considered systems we can directly investigate the role of water thermodynamics in molecular recognition. A broad range of thermodynamic signatures is found in which water (rather than cavity or ligand) enthalpic or entropic contributions appear to drive cavity-ligand binding or rejection. The unprecedented, nanoscale picture of hydration thermodynamics can help the interpretation and design of protein-ligand binding experiments. Our study opens appealing perspectives to tackle the challenge of solvent entropy estimation in complex systems and for improving molecular simulation models

    Mitochondrial Protease ClpP is a Target for the Anticancer Compounds ONC201 and Related Analogues

    Get PDF
    ONC201 is a first-in-class imipridone molecule currently in clinical trials for the treatment of multiple cancers. Despite enormous clinical potential, the mechanism of action is controversial. To investigate the mechanism of ONC201 and identify compounds with improved potency, we tested a series of novel ONC201 analogues (TR compounds) for effects on cell viability and stress responses in breast and other cancer models. The TR compounds were found to be ∼50-100 times more potent at inhibiting cell proliferation and inducing the integrated stress response protein ATF4 than ONC201. Using immobilized TR compounds, we identified the human mitochondrial caseinolytic protease P (ClpP) as a specific binding protein by mass spectrometry. Affinity chromatography/drug competition assays showed that the TR compounds bound ClpP with ∼10-fold higher affinity compared to ONC201. Importantly, we found that the peptidase activity of recombinant ClpP was strongly activated by ONC201 and the TR compounds in a dose- and time-dependent manner with the TR compounds displaying a ∼10-100 fold increase in potency over ONC201. Finally, siRNA knockdown of ClpP in SUM159 cells reduced the response to ONC201 and the TR compounds, including induction of CHOP, loss of the mitochondrial proteins (TFAM, TUFM), and the cytostatic effects of these compounds. Thus, we report that ClpP directly binds ONC201 and the related TR compounds and is an important biological target for this class of molecules. Moreover, these studies provide, for the first time, a biochemical basis for the difference in efficacy between ONC201 and the TR compounds

    Social Anxiety Modulates Subliminal Affective Priming

    Get PDF
    BACKGROUND: It is well established that there is anxiety-related variation between observers in the very earliest, pre-attentive stage of visual processing of images such as emotionally expressive faces, often leading to enhanced attention to threat in a variety of disorders and traits. Whether there is also variation in early-stage affective (i.e. valenced) responses resulting from such images, however, is not yet known. The present study used the subliminal affective priming paradigm to investigate whether people varying in trait social anxiety also differ in their affective responses to very briefly presented, emotionally expressive face images. METHODOLOGY/PRINCIPAL FINDINGS: Participants (n = 67) completed a subliminal affective priming task, in which briefly presented and smiling, neutral and angry faces were shown for 10 ms durations (below objective and subjective thresholds for visual discrimination), and immediately followed by a randomly selected Chinese character mask (2000 ms). Ratings of participants' liking for each Chinese character indicated the degree of valenced affective response made to the unseen emotive images. Participants' ratings of their liking for the Chinese characters were significantly influenced by the type of face image preceding them, with smiling faces generating more positive ratings than neutral and angry ones (F(2,128) = 3.107, p<0.05). Self-reported social anxiety was positively correlated with ratings of smiling relative to neutral-face primed characters (Pearson's r = .323, p<0.01). Individual variation in self-reported mood awareness was not associated with ratings. CONCLUSIONS: Trait social anxiety is associated with individual variation in affective responding, even in response to the earliest, pre-attentive stage of visual image processing. However, the fact that these priming effects are limited to smiling and not angry (i.e. threatening) images leads us to propose that the pre-attentive processes involved in generating the subliminal affective priming effect may be different from those that generate attentional biases in anxious individuals

    Patterns and rates of exonic de novo mutations in autism spectrum disorders

    Get PDF
    Autism spectrum disorders (ASD) are believed to have genetic and environmental origins, yet in only a modest fraction of individuals can specific causes be identified1,2. To identify further genetic risk factors, we assess the role of de novo mutations in ASD by sequencing the exomes of ASD cases and their parents (n= 175 trios). Fewer than half of the cases (46.3%) carry a missense or nonsense de novo variant and the overall rate of mutation is only modestly higher than the expected rate. In contrast, there is significantly enriched connectivity among the proteins encoded by genes harboring de novo missense or nonsense mutations, and excess connectivity to prior ASD genes of major effect, suggesting a subset of observed events are relevant to ASD risk. The small increase in rate of de novo events, when taken together with the connections among the proteins themselves and to ASD, are consistent with an important but limited role for de novo point mutations, similar to that documented for de novo copy number variants. Genetic models incorporating these data suggest that the majority of observed de novo events are unconnected to ASD, those that do confer risk are distributed across many genes and are incompletely penetrant (i.e., not necessarily causal). Our results support polygenic models in which spontaneous coding mutations in any of a large number of genes increases risk by 5 to 20-fold. Despite the challenge posed by such models, results from de novo events and a large parallel case-control study provide strong evidence in favor of CHD8 and KATNAL2 as genuine autism risk factors

    Somatic mutations affect key pathways in lung adenocarcinoma

    Full text link
    Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well- classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers - including NF1, APC, RB1 and ATM - and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.National Human Genome Research InstituteWe thank A. Lash, M.F. Zakowski, M.G. Kris and V. Rusch for intellectual contributions, and many members of the Baylor Human Genome Sequencing Center, the Broad Institute of Harvard and MIT, and the Genome Center at Washington University for support. This work was funded by grants from the National Human Genome Research Institute to E.S.L., R.A.G. and R.K.W.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62885/1/nature07423.pd

    Sound Symbolism Facilitates Word Learning in 14-Month-Olds

    Get PDF
    Sound symbolism, or the nonarbitrary link between linguistic sound and meaning, has often been discussed in connection with language evolution, where the oral imitation of external events links phonetic forms with their referents (e.g., Ramachandran & Hubbard, 2001). In this research, we explore whether sound symbolism may also facilitate synchronic language learning in human infants. Sound symbolism may be a useful cue particularly at the earliest developmental stages of word learning, because it potentially provides a way of bootstrapping word meaning from perceptual information. Using an associative word learning paradigm, we demonstrated that 14-month-old infants could detect Köhler-type (1947) shape-sound symbolism, and could use this sensitivity in their effort to establish a wordreferent association

    Analysis of protein-coding genetic variation in 60,706 humans

    Get PDF
    Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. We describe the aggregation and analysis of high-quality exome (protein-coding region) sequence data for 60,706 individuals of diverse ethnicities generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of truncating variants with 72% having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human “knockout” variants in protein-coding genes

    Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.

    Get PDF
    The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies
    corecore