144 research outputs found

    Nanowires with Unimaginable Characteristics

    Get PDF

    Recent Advances in Mechanical Properties of Nanowires

    Get PDF

    Does Culture Matter to Pro-Social Behavior? Evidence from a Cross-Ethnic Lab Experiment

    Get PDF
    Recent investigations have uncovered large, consistent deviations from the predictions of Homo economics that individuals are entirely self-regarding. Our study undertook a cross-cultural study of behavior search for the evidences of other-regarding behaviors and its ethnic difference, and accounted for by anatomy of culture. This study recruited 90 subjects of three ethnic groups from market trade-based (ethnic Han), nomadism-based (ethnic Zang) and agriculture-based (ethnic Bouyei) areas in China and conducted public good provision experiment with stranger-treatment design. Under the assumption of self-regarding preferences, the Nash equilibrium is zero contribution by all in public account using backward induction. However, we found contributions did not reduce to zero over all three sessions. Besides, the differences in contributions between ethnicities strongly depended on the degree of ethnic dominance, and Zang harbored the strongest reciprocal preference generally over all group structures. A particular set of measurable factors was identified as proxies for cultural influences on behavioral differences observed in experiments between ethnicities. The results showed all of the cultural factors accounted for the behavioral differences between the ethnic Han and the other two minor ethnicities. However, behavioral difference between minor ethnicities was attributed to group structure only. (1) People may harbor various forms of prosocial emotions in economic affairs, and especially exhibit stronger at the initial phase rather than what canonical model assumes. (2) Behavioral differences between ethnicities are prominent and can be explained by differences in cultural influence

    Fault diagnosis method using support vector machine with improved complex system genetic algorithm

    Get PDF
    The idea of dimensional raising and linearization in support vector machine (SVM) provides a new solution for the diagnosis problem of reciprocating compressor in which the spatial distribution of fault data is complex. The selection of parameters in SVM has significant influence on the diagnosis performance. The excellent global searching ability of genetic algorithm (GA) makes itself suitable to optimize the parameters of SVM. However, GA needs many generations and longer training time which results in the low efficiency of diagnosis. To address this issue, a new fault diagnosis method ICSGA-SVM is proposed in this paper. ICSGA-SVM adopts the improved complex system genetic algorithm (ICSGA) to optimize the parameter in SVM. The complex system genetic algorithm (CSGA) applies the features of self-adaption and self-organization in complex system theory to the redesign of GA. According to the characteristics of the data set in reciprocating compressor, an adaptive mutation operator is created to replace the original mutation operator in CSGA. Besides, the gene floating operator in CSGA is removed in ICSGA to further improve the efficiency of the algorithm on-chip run. The simulation results on the fault data of reciprocating compressor indicate that our algorithm reduce the training time by 20.7 % when increasing diagnosis accuracy compared with the diagnosis method of SVM with GA (GA-SVM)

    Diagnostic and prognostic value of serum miR-9-5p and miR-128-3p levels in early-stage acute ischemic stroke

    Get PDF
    OBJECTIVES: To investigate the clinical utility of serum microRNA levels (miR-9-5p and miR-128-3p) in the diagnosis and prognosis of early-stage acute ischemic stroke (AIS). METHODS: We compared the differences in serum miR-9-5p and miR-128-3p levels between patients with AIS and healthy individuals (controls). The serum levels of miR-9-5p and miR-128-3p were quantified using quantitative real-time PCR, and the association of each miRNA with AIS was determined using receiver operator characteristic curve analysis. The predictive value of these indices in the diagnosis of early-stage AIS was evaluated in conjunction with that of computed tomography findings and neuron-specific enolase levels. The prognosis of patients with AIS was evaluated three months after their discharge from hospital using the modified Rankin scale, which classifies the prognosis as either favorable or poor. Logistic regression analysis was used to analyze the correlation between miR-9-5p and miR-128-3p levels and patient prognosis. RESULTS: The serum levels of miR-9-5p and miR-128-3p were upregulated in patients with AIS relative to those in healthy individuals. A pronounced correlation was identified between serum miR-9-5p and miR-128-3p levels and patient prognosis, with high levels of both miRNAs being associated with poor patient outcomes. CONCLUSION: Assessment of serum miR-9-5p and miR-128-3p levels is important for the early diagnosis and prognosis of AIS

    A Plant-Produced Vaccine Protects Mice Against Lethal West Nile Virus Infection Without Enhancing Zika or Dengue Virus Infectivity

    Get PDF
    West Nile virus (WNV) has caused multiple global outbreaks with increased frequency of neuroinvasive disease in recent years. Despite many years of research, there are no licensed therapeutics or vaccines available for human use. One of the major impediments of vaccine development against WNV is the potential enhancement of infection by related flaviviruses in vaccinated subjects through the mechanism of antibody-dependent enhancement of infection (ADE). For instance, the recent finding of enhancement of Zika virus (ZIKV) infection by pre-exposure to WNV further complicates the development of WNV vaccines. Epidemics of WNV and the potential risk of ADE by current vaccine candidates demand the development of effective and safe vaccines. We have previously reported that the domain III (DIII) of the WNV envelope protein can be readily expressed in Nicotiana benthamiana leaves, purified to homogeneity, and promote antigen-specific antibody response in mice. Herein, we further investigated the in vivo potency of a plant-made DIII (plant-DIII) in providing protective immunity against WNV infection. Furthermore, we examined if vaccination with plant-DIII would enhance the risk of a subsequent infection by ZIKV and Dengue virus (DENV). Plant-DIII vaccination evoked antigen-specific cellular immune responses as well as humoral responses. DIII-specific antibodies were neutralizing and the neutralization titersmet the threshold correlated with protective immunity by vaccines against multiple flaviviruses. Furthermore, passive administration of anti-plant DIII mouse serum provided full protection against a lethal challenge of WNV infection in mice. Notably, plant DIII-induced antibodies did not enhance ZIKV and DENV infection in Fc gamma receptor-expressing cells, addressing the concern of WNV vaccines in inducing cross-reactive antibodies and sensitizing subjects to subsequent infection by heterologous flavivirus. This study provides the first report of a WNV subunit vaccine that induces protective immunity, while circumventing induction of antibodies with enhancing activity for ZIKV and DENV infection

    Hydroxypropyl methylcellulose and hydroxypropyl starch : rheological and gelation effects on the phase structure of their mixed hydrocolloid system

    Get PDF
    It is common to hybridize biopolymers for developing materials with combined properties or functionality. However, biopolymers are usually not fully compatible despite their chemical similarity, posing challenges to create mixed systems. Herein, we investigated how the gelation behavior and rheological properties of hydroxypropyl methylcellulose (HPMC), a thermal gel, and hydroxypropyl starch (HPS), a cooling gel, affect their miscibility and the phase structure of their mixed system. The dependence of the zero-shear viscosity for HPMC/HPS paste on biopolymer concentration in a double-logarithmic coordinate can be divided into two parts with the slopes being 11.9 and 2.8 respectively, indicating different degrees of intermolecular entanglement. A typical “sea-island” morphology was shown in the blends, and the phase structure (continuous or discrete) changed with varying HPMC/HPS blend ratio and temperature. This phase structure change can be well correlated to rheological parameters such as zero-shear viscosity, loss tangent, complex viscosity, and the Arrhenius equation correction coefficient (α). Biopolymer concentration, HPMC/HPS ratio, and temperature together controlled rheological properties and phase distribution for the mixed system. The relationship between rheological behavior and phase structure for HPMC/HPS understood from this work provides an insight into designing mixed biopolymer systems with desirable processability, structure, and properties

    Antibody-Dependent Enhancement Activity of a Plant-Made Vaccine Against West Nile Virus

    Get PDF
    West Nile virus (WNV) causes annual outbreaks globally and is the leading cause of mosquito-borne disease in Unite States. In the absence of licensed therapeutics, there is an urgent need to develop effective and safe human vaccines against WNV. One of the major safety concerns for WNV vaccine development is the risk of increasing infection by related flaviviruses in vaccinated subjects via antibody-dependent enhancement of infection (ADE). Herein, we report the development of a plant-based vaccine candidate that provides protective immunity against a lethal WNV challenge mice, while minimizes the risk of ADE for infection by Zika (ZIKV) and dengue (DENV) virus. Specifically, a plant-produced virus-like particle (VLP) that displays the WNV Envelope protein domain III (wDIII) elicited both high neutralizing antibody titers and antigen-specific cellular immune responses in mice. Passive transfer of serum from VLP-vaccinated mice protected recipient mice from a lethal challenge of WNV infection. Notably, VLP-induced antibodies did not enhance the infection of Fc gamma receptor-expressing K562 cells by ZIKV or DENV through ADE. Thus, a plant-made wDIII-displaying VLP presents a promising WNV vaccine candidate that induces protective immunity and minimizes the concern of inducing ADE-prone antibodies to predispose vaccinees to severe infection by DENV or ZIKV

    DecAug: Out-of-Distribution Generalization via Decomposed Feature Representation and Semantic Augmentation

    Full text link
    While deep learning demonstrates its strong ability to handle independent and identically distributed (IID) data, it often suffers from out-of-distribution (OoD) generalization, where the test data come from another distribution (w.r.t. the training one). Designing a general OoD generalization framework to a wide range of applications is challenging, mainly due to possible correlation shift and diversity shift in the real world. Most of the previous approaches can only solve one specific distribution shift, such as shift across domains or the extrapolation of correlation. To address that, we propose DecAug, a novel decomposed feature representation and semantic augmentation approach for OoD generalization. DecAug disentangles the category-related and context-related features. Category-related features contain causal information of the target object, while context-related features describe the attributes, styles, backgrounds, or scenes, causing distribution shifts between training and test data. The decomposition is achieved by orthogonalizing the two gradients (w.r.t. intermediate features) of losses for predicting category and context labels. Furthermore, we perform gradient-based augmentation on context-related features to improve the robustness of the learned representations. Experimental results show that DecAug outperforms other state-of-the-art methods on various OoD datasets, which is among the very few methods that can deal with different types of OoD generalization challenges.Comment: Accepted by AAAI202
    • …
    corecore