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Abstract

It is common to hybridize biopolymers for developimaterials with combined properties or
functionality. However, biopolymers are usually fulty compatible despite their chemical
similarity, posing challenges to create mixed systeHerein, we investigated how the gelation
behavior and rheological properties of hydroxyptapgthylcellulose (HPMC), a thermal gel, and
hydroxypropyl starch (HPS), a cooling gel, affdait miscibility and the phase structure of their
mixed system. The dependence of the zero-shearsiig¢or HPMC/HPS paste on biopolymer
concentration in a double-logarithmic coordinate ba divided into two parts with the slopes being
11.9 and 2.8 respectively, indicating differenti@®s of intermolecular entanglement. A typical
“sea-island” morphology was shown in the blendsl, e phase structure (continuous or discrete)
changed with varying HPMC/HPS blend ratio and terajpee. This phase structure change can be
well correlated to rheological parameters sucheas-ghear viscosity, loss tangent, complex
viscosity, and the Arrhenius equation correctioafftaent (o). Biopolymer concentration,
HPMC/HPS ratio, and temperature together contratetlogical properties and phase distribution
for the mixed system. The relationship between ldgcal behavior and phase structure for
HPMC/HPS understood from this work provides anghsinto designing mixed biopolymer
systems with desirable processability, structuné, @operties.

Keywords: Hydroxypropyl methylcellulose; Hydroxypropyl stardRheological properties;

Biopolymer phase structure; Biopolymer blends
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1 Introduction

As a modified biopolymer, hydroxypropyl methylcétise (HPMC) has been widely applied in

different applications such as edible packagingjiomeal capsules, and drug delivery systems due to

its water-solubility and biodegradability and exest film-forming, mechanical and barrier
properties (Al-Tabakha, 2010; Muhammad-Javeed & &hamed, 2018; Siepmann & Peppas, 2012).
However, the low oxygen-barrier property (Ghadernmdamdipour, Sadeghi, Ghadermazi, & Asl,
2019; Hay, et al., 2018; Y. F. Wang, Yu, et al.1@)) high production energy consumption (Zhang,
et al., 2013), and high price of HPMC (Allenspatimmins, Sharif, & Minko, 2020) pose strong
limits for its applications. To cope with the progedimitations of individual polymers, achieve
enhanced and/or new material properties, reduds,csd to expand applications, mixing different
polymers is one of the most cost-effective meth@dghjeh, Khonakdar, & Jafari, 2015; Botaro, de
Freitas, do Carmo, & Raimundo, 2020; Jéssica BisSiilva, Michael Thomas Cook, & Bruschi,
2020; Xu, Wang, & Shi, 2020). Hydroxypropyl staf¢tPS), a typical chemically modified starch
with some original hydroxyl groups replaced withdhgxypropyl groups, is cheaper than HPMC,
show excellent gas barrier property, and has begalywsed in the food industry, therefore being
an ideal substitute for part of HPMC (X. Chen,let2019; J. Liu, Lai, Wang, Wang, & Liu, 2020;
Qin, et al., 2019; W. W. Wang, Sun, & Shi, 2019).

The production of edible materials such as pre-&atiiilms (medicinal capsules) or edible
coating generally relies on wet processes thabased on film-forming solutions or dispersions
(Cuq, Gontard, & Guilbert, 1998; Suhag, Kumar, Bskia, & Upadhyay, 2020). Specifically,

polymers are first dissolved or dispersed in aitiqand then dried. The design of such processes
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(typically comprising pumping, casting, dippingubhing, spraying, and drying) requires accurate
data on the rheological properties of film-formsw@utions or dispersions (Q. Wang, Yang, Chen, &
Shao, 2012). In turn, rheological properties alsy pn important role in controlling the quality of
coating films (Peressini, Bravin, Lapasin, RizzditiSensidoni, 2003; Xiao, Tong, & Lim, 2012).

For thermodynamic reasons, most polymer blendsrarescible on a molecular scale.
Nevertheless, immiscible blends often turn outdaibeful. For example, while polypropylene and
polystyrene are immiscible, a polypropylene 90/ptsene 10 blend, which showed a phase
separation structure where polystyrene droplete weattered in the polypropylene matrix, showed
the maximum impact strength that blends at othigwvg4R. Y. Chen, Liu, Han, Zhang, & Li, 2020).
The degree of polymer miscibility largely influesciine rheological properties of the mixed systems
(Tanaka, Sako, Hiraoka, Yamaguchi, & Yamaguchi,®®2ongphan & Harnkarnsujarit, 2020).
And, the rheological properties of polymer blendsedmine material phase structure (llyin,
Makarova, Polyakova, & Kulichikhin, 2020; Xiao, TgnZhou, & Deng, 2015).

Considering that both HPMC and HPS are water-selpblysaccharides and consist of the same
original repeat unit (glucose with hydroxyl grouplere should be good compatibility between
them. However, HPMC and HPS are hydrogels with spgedemperature-induced gelation behavior.
Specifically, HPMC dissolves in water at a low tergiure and congeals at a high temperature,
whereas HPS undergoes gelation on cooling butesolgion heating (Polamaplly, et al., 2019; Qin,
et al., 2019; Zhong, et al., 2020). The differemcgelation behavior between HPMC and HPS
makes it challenging to achieve a blend of theseliwpolymers with high miscibility and fine

phase distribution. Moreover, the phase structtl¢RMC and HPS should influence the mixed gel
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properties. The rheological properties of HPMC/H®&hds depend on several factors such as
biopolymer concentration, mixing ratio, temperafuaed shear stress applied (Y. F. Wang, Zhang, et
al., 2016). The manipulation of these factors camsed to further explore the relationship between
microstructure and properties for thermal-/coolged-mixed systems.

In this work, the effects of solution concentratiamxing ratio, and temperature on the
rheological properties and morphology of HPMC/HR&hts were investigated. A schematic model
is proposed to describe temperature-induced phassige changes for HPMC/HPS blends. The
knowledge obtained from this work could also helpinderstanding the relationship between
microstructure and processability for mixed systéased on biopolymers with different gelation
behavior. The results could also be insightfultfer design of similar biopolymer composite

materials with tailored structure and properties.

2 Materials and method

21 Materials

A commercially available pharmaceutical-grade HPWT-E15; viscosity at 2% concentration:
6.3 mPas; pH 6.0; methoxyl content on dry basi%b;29droxypropyl oxygen content on dry basis
8.4%) was purchased from Huzhou Hopetop Pharmaeg¢@b., Ltd (China). A food-grade maize

HPS with a degree of substitution (DS) of 0.11 wasplied by Penford (Australia).

2.2 Samplepreparation
HPMC/HPS solutions with different total biopolymencentration (5—20 wt%) and weight ratio

(0:10 to 10:0, w/w) were prepared. Specifically, M and HPS in the form of dry powder were
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firstly mixed and then dispersed in hot water (@) With stirring for 30 min to ensure their proper
dispersion. Then, using a water bath, the solutieer® heated to 95 °C and maintained for 1 h with
stirring to gelatinize HPS. Afterwards, the solaBovere cooled to room temperature to dissolve

HPMC under stirring before testing.

2.3 Rheological measurement

The rheological properties of HPMC/HPS pastes werestigated using a Discovery HR-2
rheometer (TA Instruments, New Castle, DE, USApahallel-plate geometry (40 mm diameter)
with a gap of 0.5 mm was used for measurement.

To study the stability of HPMC/HPS pastes undeashbe samples were subjected to steady
shear at a constant high shear rate of 8Dfbs 2500 s at 25 °C and the change in viscosity wa
recorded.

Under steady shear, the viscosity of a polymer aieynge with time before a stable value is
achieved (Tajuddin, Xie, Nicholson, Liu, & Halle3Q11). As a result, pre-shearing with a shear rate
of 800 $* at room temperature (25 °C) for 1000 s was peréorio ensure all samples to achieve a
stable rheological state before immediate measurerBbear viscosity was measured as a function
of shear rate in the range of $010° s.

Three-interval thixotropy testing was performednieestigate the stability of HPMC/HPS pastes.
This test was carried out at 25 °C at a low-shiayeswith the shear rate kept af 1fer 50 s, then a
high-shear stage with the shear rate kept at 1000rs20 s, and finally, a structural recovery stage

with the shear rate kept at T or 250 s.
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Temperature sweeps were carried out from 5 °C ttC8%ith a heating rate of 2 °C/min under
dynamic mode. The frequency was set at 1 Hz andtth& at 0.1% (to be in the linear range of
viscoelasticity). The sample was placed betweepénallel plates, and then a small amount of

silicone oil was applied to the periphery of thenpée to prevent moisture evaporation.

2.4 Microscopy observation and method of dying HPS

An Olympus BHZ-UMA optical microscope was usedrt@age the morphology of HPMC/HPS
pastes. The HPMC/HPS (5:5, w/w) solution of a cotregion of 3 wt% was prepared using the
same method mentioned above. The glass and thigosolere kept at the same testing temperature
and then the films were prepared by casting theatisols on glass at different temperatures (25 °C,
45 °C, and 85 °C). HPS was dyed with 1% iodine fatsolution (prepared by mixing 1g of iodine
and 10 g of potassium iodine solution in a 100 iakK, with alcohol subsequently added) and dried

at the same testing temperature.

3 Results and discussions

3.1 Time-dependence of HPM C/HPS paste viscosity

Fig. 1 shows the viscositys. time curves for HPMC/HPS blends with differentes¢éd blending
ratio and concentrations at a constant shear f&@s™ (not all results presented here, as the trend
was quite similar). For all blends, the viscosigceased with time until a stable value was ackieve
The time needed for achieving a stable state vavigtdHPMC/HPS ratio and total biopolymer
concentration. After 1000 s, all the samples redadomstant viscosity. Therefore, pre-shearing at

800 s* for 1000 s was performed for rheological testsalothe samples.
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Fig. 1 Viscosity as a function of time for HPMC/HPS pasfBse shear rate was fixed at 808 s

3.2 Effect of biopolymer concentration on HPM C/HPS paste viscosity

Fig. 2(A) shows the viscositys. shear rate curves for HPMC/HPS pastes of different
concentration. At a certain shear rate, increasiagolymer concentration resulted in higher
viscosity, which is as expected. For all HPMC/HRStps, the viscosity decreased with increasing
shear rate, suggesting shear-thinning behavioreMaar, the dependence of viscosity on shear rate
depended on total biopolymer concentration. Thaustienning behavior was more evident with a

higher biopolymer concentration.
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Fig. 2 A) Flow curves for 50:50 (w/w) HPMC/HPS pastes tfedent total biopolymer
concentration at 25 °C; B) Zero-shear viscositg &snction of total biopolymer concentration, with
the molecular conformation of HPMC/HPS schematycsiiown (the HPMC/HPS ratio was 50:50

(w/w), red lines represent HPMC chains and gregdiAPS).

The viscositys. shear rate curves for HPMC/HPS pastes were fitiddthe Carreau model
(Carreau, Pierre, & J., 1972) and then extrapolaterbtain zero-shear viscosity, (0.9969 <R* <
0.9997).Fig. 2(B) shows zero-shear viscosity as a function of foigbolymer concentration. It is
noticeable thatp, had a power-law dependence on biopolymer condeniras represented by the
equation below:

no = kC™ 1)
Wherer is the zero-shear viscosity,is the total biopolymer concentratidnandm are constants.

The dependence @f on biopolymer concentration in a double-logaritbrmoordinate can be
divided into two parts with the slopas)(being 11.9 and 2.8, respectively. The criticalantration
(C*) that divides the two regions was about 8 wt%.okdmg to the general relationship between
biopolymer concentration dependence and the polgtaée in solution (Colby, 2010), the likely
molecular conformation of HPMC/HPS blends was psaglschematically in the insetfig. 2(B).

As the lowest concentration (5 wt%) in our worlsi#gl much higher than those used in previous
studies (0.05-1.3 wt%) (Morris, Cutler, Ross-MurpReges, & Price, 1981; Pakravan, Heuzey, &
Ajji, 2011; Tan, Li, Chen, & Xie, 2016), likely, éhsamples in both regions were in a concentrated
state. In the first regior(< C*), gelatinized HPS thickened at a low temperatadefarms

microgel, which interacts with HPMC chains at thienmgel particle edge. HPS microgel particles
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and HPMC chains tended to interact or entangle gatth other due to the space-block effect and
hydrogen bonding (inset a Bfg. 2B). Thern, of HPMC/HPS paste increased rapidly with incregsin
concentration. In the second regi@ > C*), the interactions and entanglements were alrdadgs
enough (inset b dfig. 2B) and their enhancement by increasing concentratamnot as effective
as in the first region. Thus, the slope for theoselcregion was not as high as the first region.

For a polymer solution, the relationship betweesasistress:] and shear rate)can be
described by the Ostwald-de Waele equation:

T=Ky" (2)

WhereK is the fluid consistency index ands the flow behavior index. The valueskoaindn
calculated for HPMC/HPS pastes of different conedian are shown iffable 1.

For a Newtonian fluidn equals 1. Pseudoplastic fluids hawve 1, and greater deviation of
from 1 indicates stronger pseudoplastic (sheamthg) behaviorTable 1 shows that for all the
samplesn is less than 1, indicating they were all pseudsipigshear-thinning). For HPMC/HPS
pastes of low concentration (e.g. 5 wt%), thealues are close to 1, meaning they were morealike
Newtonian fluid as HPMC chains and HPS microgetiplas are mostly separated in the solution.
Increasing concentration led to lowersuggesting stronger shear-thinning behavior.fldve
behavior of high-concentration samples is attributethe interaction and entanglement among

HPMC/HPS chains.

Table 1 Flow behavior indexn() and fluid consistency indeXJ for 50:50 (w/w) HPS/HPMC pastes

of different concentration at 25 °C.

Concentration (%) n K (Pa-9 R

10



5 0.922+0.004 0.06x0.00 1.0000
6 0.909+0.001 0.09+0.00 1.0000
7 0.859+0.002 0.20£0.01 1.0000
8 0.842+0.001 0.28+0.01 0.9999
10 0.747+0.003 1.15+0.05 0.9981
12 0.735%0.005 2.34+£0.07 0.9988
15 0.681+0.006 6.27+£0.94 0.9993
18 0.678x0.006 13.37+0.88 0.9991
20 0.656x0.000 18.06+0.54 0.9984
22 0.653+0.012 24.40£2.31 0.9979
193 4 Mean * standard deviation.
194
195 For low-concentration sampléas,was small. Higher concentration resulted in highewhich
196 can be linked to higher viscosity, as expected.
197 3.3 Effect of HPMC/HPSratio on HPM C/HPS paste viscosity
198 Fig. 3(A) shows the effect of HPMC/HPS ratio on the visgosftHPMC/HPS pastes. At a low

199 HPS ratio (< 20%), the viscosity was not signifitamfluenced by shear rate, which could be
200 ascribed to dispersed biopolymer chains. In coptths samples with a high HPS ratio showed
201 significantly lower viscosity with increasing sheate, a typical shear thinning behavior. At aaert
202 shear rate, a higher HPS ratio led to higher visgoBhis corresponds to the fact that HPS is a gel
203  with high viscosity at a low temperature (25 °C).

204

11
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209 Fig. 3A) Viscosityvs. shear rate curves for HPMC/HPS pastes with difitelP S ratio at 25 °C; B)
210 Zero-shear viscosityo, with the solid line indicating measured valued #re dashed line predicted
211 values; C) Flow behavior index and D) flow consistency indd« for HPMC/HPS pastes with

212 different HPS ratio. The total concentration of HBMPS was 15 wt%.

213

214 Table 2 lists then andK values for HPS/HPMC pastes with different mixiaga. With

215 increasing HPS ratiom reduced gradually, whill showed a rising trend, implying that the addition
216 of HPS made the HPMC paste more viscous and difficidlow. This result is consistent with a
217 previous study (Zhang, et al., 2015).

218

219 Table 2 Flow behavior indexn) and fluid consistency indeX) of HPS/HPMC solutions with
220 different HPS/HPMC ratio at 25 °C. The total biogokr concentration was fixed at 15 wt%.

12



HPMC/HPS n K (Pa-§ R

10:0 0.9511+0.0023 0.84+0.01 0.9999
9:1 0.9280+0.0096 1.09+0.10 0.9998
8:2 0.8915+0.0146 1.41+0.16 0.9994
7:3 0.8423+0.0135 1.94+0.31 0.9998
6:4 0.7170+0.0094 4.760.20 0.9996
55 0.6807+0.0063 6.271£0.94 0.9993
4:6 0.6666+0.0032 8.33£0.41 0.9969
3.7 0.5835+0.0028 14.91+0.40 0.9942
2:8 0.5068+0.0037 26.93+1.39 0.9869
1.9 0.4694+0.0008 41.76+0.64 0.9897
0:10 0.4687+0.0019 45.01+0.72 0.9935

221

222 For a homogeneous system, the relationship amandhtdological properties of the blend and its

223 individual components follow a logarithmic sum r@létracki, 1983). For a binary system, this rule
224  can be expressed as:

225 logF = ¢,logF; + ¢,logF, 3)

226 whereF, F1, andF; are the rheological parameter of the mixture, comemt 1, and component 2,
227 respectively;¢, and ¢, are the mass fractions of component 1 and comp@)easpectively,

228  with ¢y + ¢, = 1.

229 The measured and predicted curvegwods a function of HPS ratio are showrFig. 3(B). The
230 zero-shear viscosity increased with HPS ratio aed telationship generally follows the log-

13



231 additivity rule, implying good compatibility of thisystem. Nonetheless, the measured values deviate
232 from the mixing rule either positively or negatiyetiepending on HPS ratio. This suggests the

233 mixed system had a continuous-discrete type ofgohtaacture and the change of continuous phase
234 occurred (Yao, Mukuze, Zhang, & Wang, 2013) at &8Hiatio of 60%. Regarding the negative

235 deviation at a low HPS ratio, HPMC chain existe@d a®ntinuous phase in which HPS microgel was
236 scattered. Regarding positive deviation at a higtsHatio, HPMC became a separated phase

237 scattered in the HPS continuous phase. Theseseseltonfirmed by microscopy observation with
238 aprevious study (Y. F. Wang, Zhang, et al., 2016).

239 Fig. 3(C) shows thah decreased progressively with increasing HPS eattbthe relationship

240 betweem and HPS ratio follows the linear-additivity rulehis suggests that addition of HPS to

241 HPMC imparts stronger pseudoplastic (shear-thinnedpavior. The linear regression analysis was
242  achieved withR? = 0.98062, denoting good compatibility betweenttte biopolymers.

243 Fig. 3(D) shows that increasing HPS ratio resulted in higheelated to the gelation behavior of
244 HPS at a low temperature. For HPMC/HPS pastesamitextreme blend ratio (HPS ratio < 20 wt%
245 or > 70 wt%), the&K value for a blend paste is closer to that forltiogolymer with a high ratio in

246 that mixture. In this regard, the viscosity of atare paste is mainly determined by the continuous
247 phase. On the other hand, for HPMC/HPS pastesanmitihtermediate ratio (20 wt% < HPS ratio <
248 70 wt%), although HPMC with low viscosity still ested as a continuous phakerose rapidly with

249 increasing HPS ratio, indicating that HPS as tipassted phase made a major contribution to the
250 viscosity of the blends. This implies that the ammbus phase and the separated phase make

251 different contributions to the viscosity of a bletepending on the ratio of the two components.

14
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3.4 Thixotropic behavior of HPM C/HPS pastes

Thixotropy describes the structural stability ahaterial against shear applied (Krystyjan, et al.,
2016; Shakeel, Kirichek, & Chassagne, 2020; Maiigkrd, Adamczyk, & Krystyjan, 2011).
Thixotropy can be linked to time and the historysb&aring that results in microstructural changes
(Czaikoski, da Cunha, & Menegalli, 2020; Mewis & Yver, 2009; M. Sikora, et al.,
shows the results of the three-interval thixotrdmbavior of HPMC/HPS pastes with different

mixing ratio. All the samples were thixotropic. Tviscosity at a low shear rate (,sn the first and

third stages) increased significantly with a higRH&S ratio.

Fig. 4 Three-interval thixotropic curves for HPMC/HPS @astvith different HPMC/HPS ratio at 25
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The structural recovery ratio (DSR) can be defingthe equation:

DSR =1t
n

x 100% (4)

15

201%)g. 4
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wherey; is the viscosity in the structural recovery stébe third stage) at a certain tintegndy is
the final viscosity in the first stage (Mewis & Wagg, 2011; Toker, Karasu, Yilmaz, & Karaman,
2015).

With DSR < 100%, it can be assumed that the reeavpaste was less resistant to shear and the
material is thixotropic. In contrast, DSR > 100%ligates that the sample is anti-thixotropic. In a
word, for thixotropic material, a higher DSR valmeans weaker thixotropic behavior (higher
shear-resistance) and higher rheological stability.

The DSR data from three-interval thixotropic tesese listed inTable 3. The pure-HPMC
solution showed a very high DSR value, close t®4.0 this regard, HPMC chains are rigid with a
short relaxation time, which means the structurereaover quickly. In contrast, the pure-HPS
solution presented a low DSR value. This indic#tes the structural recovery of HPS is slow and

can be explained by HPS chains being flexible aed tong relaxation time.

Table 3 Degree of structure recovery (DSR) at certain recptime for HPMC/HPS solutions with

different HPMC/HPS ratio at 25 °C. The total biogokr content was 15 wt%.

DSR (%)
HPMC/HPS ratio
10 s 60 s 250 s

10:0 91.29+1.70 93.57+0.65 98.98+0.37
9:1 63.26+2.12 66.67+2.18 71.66+1.66
8:2 39.32+0.95 42.94+0.95 45.78+1.30
7:3 20.43+0.62 22.87+0.75 24.76+0.77
6:4 24.68+0.43 30.81+0.27 31.83+0.53
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291

292

293
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296

55 37.00+£1.44 36.97+1.03 34.03+0.91
4:6 44.19+0.90 41.75+0.78 38.98+0.81
37 59.98+1.90 53.23+1.84 50.36%1.67
2:8 57.58+0.97 58.86+0.98 59.40+0.59
1:9 67.60+0.16 72.78+0.76 72.74+1.01
0:10 38.29+0.34 45.31+0.45 38.65+0.19

& Mean + standard deviation

While the DSR values for mixture pastes were lotlvan that for the pure-HPMC sample but
higher than that for the pure-HPS sample, the cham@®SR did not follow a consistent trend. For
mixtures with a low HPS ratio (< 30 wt%), DSR dexsed with increasing HPS ratio, indicating
enhanced thixotropic behavior. In this regard,ilbexHPS chains in the system counteracted the
effect of rigid HPMC chains to some extent, thusrdasing the capability of the structure to recover
rapidly from shear-induced deformation and prolagghe relaxation time. However, further
increasing HPS content (> 30 wt%) led to an in@eaD SR, suggesting weakened thixotropic
behavior. In this regard, the interaction betwe®@M and HPS chains might result in improvement
in overall chain rigidity and thus a reduction @laxation time.

The DSR values with different recover time are dilsted inTable 3. HPMC/HPS pastes almost
finished the structural recovery within 10 s as@I&R were very close to the final DSR (at 250 s).
For some samples, the DSR values at 60 s werelegierthan the final DSR. Given this, these

samples were more unstable as their structure dmuttestroyed even at very low shear rate.
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3.5 Effect of temperature on the dynamic rheological properties and phase structure of
HPM C/HPS pastes
As a wide range of temperature could be appliethduhe processing and storage of
biopolymers, it is important to understand the @ffef temperature on rheological properties (Park,
Chung, & Yoo, 2004; Rao, 2014). Both HPMC and HRStemperature-sensitive hydrogels and
their opposite gelling behavior make it difficutt achieve a blend with high miscibility, despite
these polysaccharides are chemically akin. Neviedkeat a suitable mixing ratio and under a

certain temperature, HPMC and HPS could interattt each other to the maximum extent.

3.5.1 Gelation behavior of HPMC/HPS pastes studied by dynamic viscoel asticity

The viscoelastic properties of HPMC/HPS pastes diffierent mixing ratio are shown iig. 5
(A). The pure-HPMC paste showed liquid-like behavia bpw temperature &' was belowG”,
while it congealed at a high temperature v@ttsurpassings”. For the pure-HPS sample, the three-
dimensional gel network at a low temperature sdlatea high temperature, inferred frédh< G”.
The cross point o’ andG” was at about 49 °C for the pure-HPMC sample antCr7for the

pure-HPS sample, confirming HPMC being a thermbbgd HPS being a cooling-gel.
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Fig. 5 A) Storage modulugy), loss modulusG”) and loss tangent (taf) vs. temperature curves for
the pure-HPMC paste, the 5:5 (w/w) HPMC/HPS pastd,the HPS paste, respectively, all having a
total biopolymer concentration of 15 wt%; B) Comyplascosityvs. temperature curves for the
HPMC paste, the 5:5 (w/w) HPMC/HPS paste, and tR8 Idaste, respectively, all having a total
biopolymer concentration of 15 wt%; C) Light-miccopic images of the dyed 5:5 (w/w)

HPMC/HPS paste of 3 wt% total biopolymer concemdraat 25°C, 45°C, and 85 °C, respectively.

For the 5:5 (w/w) HPMC/HPS paste, tBéandG"” curves were roughly parallel to those for the

pure-HPS paste at a low temperature and to thogsbdgure-HPMC paste at a high temperature.
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Given this, HPS had a major influence on the vikgie properties of the mixture at a low
temperature because HPS mainly contributed toekaign at a low temperature, whereas HPMC
dominated the mixture behavior at a high tempeeathren HPMC was responsible for gelation. The
blend had intermediate moduli between those faviddal HPS and HPMC. Besides; was

always higher tha@"” during the whole temperature range, indicatingdsidée behavior contributed
by biopolymer chain interactions. Furthermore, e (w/w) HPMC/HPS paste showed a tapeak

at about 45 °C, at which point a change of theinaopus phase occurred.

3.5.2 Effect of temperature on the complex viscosity of HPMC/HPS pastes

For mixed systems, the viscosity of individual caments is important. Normally, when two
components with largely different viscosity werexed, the component with a higher viscosity tends
to form a scattered phase in the continuous phiaibe dower-viscosity component.

Fig. 5(B) shows the effect of temperature on the complesogisy ¢*) in the range of 5-85 °C
of HPMC/HPS pastes. With increasing temperatueeyttof the pure-HPS sample showed a slight
decrease followed by a sharp decrease. However* thiethe pure-HPMC sample first experienced
a slight decline and then a strong rise startid§ aC. For the 5:5 (w/w) HPMC/HPS pasj& first
decreased slightly and then increased moderatelyaaging pattern close to that for HPS at a low
temperature but similar to that for HPMC at a higimperature. This result should be ascribed to the
different gelation behavior of HPS (cooling geldddPMC (thermal gel). The rapid change;inof
the 5:5 (w/w) mixture at about45 °C might be duéh® change in the phase distribution of
HPMC/HPS.

The temperature dependenceybfor HPMC/HPS pastes at a certain temperaturebean

evaluated using an Arrhenius-type equation:
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n*=niexp(a) (5)

wherey* is complex viscosityy; is a constant describing the viscosity coefficierd reference
temperature (Pa-s) (Laity & Holland, 2017; Qingsding, Changjiang, Jianpeng, & Shougin, 2014a),
T is the absolute temperature (R)is the gas constant (8.3144 J-Thé{™), « is the correction
coefficient (+1), ancE is the activation energy (J- md)l

For fitting usingEq.(5), the curves need to be divided into two secti@fsrie and after 45 °C
according to viscosity curves shownFig. 5(B). Table 4 presents the values Bf a, andy;
calculated based d#q.(5) for the temperature ranges of 10-45 °C and 456362 > 0.90). It can
be seen that thg value for the pure-HPMC sample was very small{21¥° Pa-s) at a low
temperature but high (1.99x€@Pa-s) at a high temperature. In contrast, fopthe-HPS sample,
they; value at a low temperature (0.56 Pa-s) was mugttehithan that at a high temperature
(1.78x10"° Pa-s). This difference in between the two biopolymers could be ascribeti¢d t
different gelation behavior, namely, HPS is a augplgel and HPMC is a thermal-gel. For the 5:5
(w/w) blend, they; value was similar to that for the pure-HPS pastérauch higher than that for the
pure-HPMC at a low temperature, and between thiahtopure-HPS sample and that for the
pure-HPMC sample at a high temperature. This irsghat HPS played a dominant role in the blend

at a low temperature, while HPMC had a much stroeéfect at a high temperature.

Table 4 Arrhenius equation parameters (correction coeffiGi; activation energyk; constanty;;
and determination coefficierf®?) for the HPS paste, the 5:5 (w/w) HPS/HPMC paste, the

HPMC paste. The total biopolymer content is 15 wt%.

Sample 5-45 °C 45-85 °C
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383

n(Pas) a E(kJ-mol) R? n(Pas) a E(kJ-mol?) R

HPMC 1.31x10° +1 27.7 0.9917 1.99x% -1 174 0.9441
HPMC-HPS 0.47 +1 8.09 0.9219 5.67%0 -1 72 0.9688
HPS 0.56 +1 10.7 0.9071 1.78x1H +1 124 0.9744

The temperature affects biopolymer paste viscasitifferent ways:

a)

b)

It is known that a higher temperature leads totgrezhain mobility and lower viscosity.
Based on this effect (effect A), the viscosityrnigarsely proportional to temperature anis

a negative value.

For a thermal gel like HPMC, increasing temperatsifavorable for greater interaction
between hydrophobic groups and that between hydioplydroxyl groups, thus enhancing
the three-dimensional network and increasing teeosity. Based on this effect (effect B),
the viscosity is proportional to temperature arid a positive value (Qing, Jinsong,
Changjiang, Jianpeng, & Shougin, 2014b).

For a cooling gel like HPS, a higher temperaturesea the breakage of intermolecular
hydrogen bonds and thus the three-dimensional mkpheading to declined viscosity. Based
on this effect (effect C), the viscosity is invdysproportional to temperature ands a

negative value.

In the low-temperature region (5-45 °C), only efffdexisted for the pure-HPMC paste since it

was in a liquid-like state and therefokewas high and = +1. For the pure-HPS paste, which was a

solid-like gel, there were both effects A and Cjleveffect A was greater than effect C; thus; +1

andE was lower than that for the pure-HPMC sample.tker5:5 (w/w) HPMC/HPS paste, both
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effects A and C presented here, but effect C wakereed by HPMC due to its liquid-like state and
thus,a = +1 andE was lower than that for the pure-HPMC sample. woad, HPS played the
dominant role in controlling the phase structurd dreological behavior at a low temperature.

In the high-temperature region (45-85 °C), bote@ A and B existed for HPMC since HPMC
underwent gelation at a high temperature, withatffe<< effect B; thusk was very high and =
-1. For HPS, there was only effect A as HPS sokt@shigh temperature and theref@ayas very
high anda. = +1. For the 5:5 (w/w) mixture paste, there wawéh effects A and B but effect B was
lessened by HPS which was liquid-like; therefere, -1 ande was lower than that for the pure-
HPMC sample. These results indicate that HPMC pldlge leading role in controlling the structure

and rheological behavior of the blend at a highpgerature.

3.5.3 Effect of temperature on the phase structure of HPMC/HPS pastes

Fig. 5(C) shows the morphologies of the 5:5 (w/w) HPMC/HR&hbs at 25 °C, 45 °C, and
85 °C observed using an optical microscope. Twasghaould be identified, the HPMC phase in
light and the HPS phase in dark. Under light micopy, HPS becomes dark after being dyed with
iodine (Y. F. Wang, Zhang, et al., 2016). Incregsemperature resulted in an increased dark area
(HPS phase) but a reduced light area (HPMC phas@pb °C, HPMC (in light color) was shown to
be a continuous phase, with the scattering of sspaiérical HPS domains (dark). In contrast, at
85 °C, the HPMC phase became quite small and sedtie the HPS continuous phase.

There should be a certain temperature at whickigwsity of HPMC and HPS became similar,
thus leading to a change in the phase distribiiontinuous or discrete) of the two biopolymers.
We observed this transition at 45 &d. 5C) when the typical “sea-island” morphology in the

blend was not shown but a pattern with two contirsuphases was observable. The observation
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agrees with the transition indicated by thedgeak and the rapid change in viscosity for the 5:5

(w/w) mixture at 45 °C.

3.6 Temperature-induced structural changes of HPM C/HPS solutions

Based on the comparison of HPMC/HPS blends disduesseve in the context of the classic
rheological behavior of polymer solution and hyhkyals (Ford, 1999; Rachmawati, Woortman, &
Loos, 2013; Zhang, et al., 2015), we propose arsalie representation of the temperature-induced
conformational change of HPMC/HPS pastes, as showig. 6.

The gelation behavior of HPMC has been reportedtlamdelated mechanism has been discussed
(Haque & Morris, 1993; Haque, Richardson, Morrig]l&y, & Caswell, 1993; S. Q. Liu, Joshi, Lam,
& Tam, 2008; Viriden, Larsson, Schagerlof, & Witgr 2010; Y. F. Wang, et al., 2018).

Specifically, it is recognized that HPMC chainssexin solution as aggregated bundles. These
bundles are held together by the packing of theubstituted or the sparingly soluble regions of the
cellulosic structure and by the hydrophobic clustgof methyl groups and hydroxyl groups in

regions with denser substitution. These packingsciusters are the so-called water cages and shells
preventing the formation of inter-chain hydrogemding at a low temperature. The absorption of
heat can break the water cages and shells, whighasic of the sol-gel transition. The breakage of
the water cages and shells exposes methyl andydpmups to the surrounding water and causes

a significant increase in volume. At a higher terapgre, due to both the interaction among
hydrophobic groups and that among hydroxyl groapspss-linked network is formeHi(. 6a).

Amylose, exuded from starch granules after gelzaindn, tended to coil to form hollow, left-
handed single helices coaxially twisting along¢hains. These helices feature a hydrophobic cavity

inside and a hydrophilic surface outside. This cacbgtructure of starch affords higher stability
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(Lopez, de Vries, & Marrink, 2012; Rachmawati, ket 2013; Zhou, et al., 2016). Therefore, HPS
behaves as flexible random coils with stretchdsetital segments in an aqueous solution at a high
temperature. With reducing temperature, the hydrdigends between starch chains and water were
broken, releasing the structured water, and inta@irchydrogen bonding is enhanced, leading a

three-dimensional gel networki@. 6b).

Low temperature High temperature

Heating

- - 3
«~—

Cooling

/™ HPMC chain
~HPS chain

Heating == Hydrophobic group

- 5
«—

Cooling

= Hydroxyl group

°  Water molecules

Heating
_
7, y \ <
Cooling

Fig.6 Schematic representation of the sol-gel transiiHPMC (a), HPS (b), and HPMC/HPS (c)

pastes.

For the mixture pastes, at a low temperature, HR€a lower viscosity than HPS and thus
HPMC forms a continuous phase encompassing disdoetains of higher-viscosity HPS gel. At the
edge of the two phases, the hydroxyl groups of HRM&ins can lose the structured water and form
hydrogen bonding with HPS chains. Upon heating, HRS$ receive enough energy to form
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hydrogen bonding with water, resulting in the grdiisintegration of the gel network. Meanwhile,
the shells and water cages of HPMC chains aretetiiand even broken to expose hydroxyl groups
and hydrophobic clusters. At a high temperaturdyi@Rorms a gel network due to the inter-chain
hydrogen bonding and hydrophobic interaction armbbes a high-viscosity phase scattered in the
continuous phase of HPS coilsg. 6¢). Therefore, HPS at a low temperature, or HPME laigh
temperature, plays a dominant role in viscoelgstiperties, gelation behavior, and phase structure

for HPMC/HPS pastes.

4 Conclusion

This work reveals how the phase structure of HPMEZ3Hbastes was influenced by the gelation
behavior and rheological properties of individudmlymers. And, we have established new links
between rheological parameters and phase structuseich systems.

The HPMC/HPS mixture showed a typical “sea-islaplkddse structure. The variation in this
phase conformation was significantly influencedtig viscosity of individual biopolymer, blending
ratio, and temperature. With increasing HPS ratie,continuous phase of the blend changed from
HPMC to HPS at an HPS ratio of 60%. We found that phase structure change can be well
correlated to the positive or negative deviationgfrom the log-additivity rule.

At a low temperature, HPMC, with low viscosity, wiag continuous phase, and so was HPS at a
high temperature. Moreover, HPS at a low tempeeaturHPMC at a high temperature, plays the
dominant role in controlling the viscoelastic prdjes and gelation behavior. With increasing
temperature, the continuous phase changed fromteIP8MC at a critical point of 45 °C. We
introduced a modified Arrhenius-type equation vatiirection coefficiend. (+1) to explore the

effect of temperature on the continuous-phase @artys phase structure change can be well
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correlated to rheological indicators such as tlesg@nce of a tatipeak, a sudden changeyit) and
the positive-negative changedn

The results from this work led a schematic modeldscribe the temperature-induced
conformational change of HPMC/HPS pastes, which prayide an insight into the understanding

of the gelling mechanism for other temperatureis@eamulti-phasic systems.
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Fig.5. A) Storage modulusy), loss modulusG”) and loss tangent (tai vs. temperature curves for the pure-HPMC paste, thévaw)
HPMC/HPS paste, and the HPS paste, respectivehaahg a total biopolymer concentration of 15 wiB) Complex viscositys. temperature
curves for the HPMC paste, the 5:5 (w/w) HPMC/HRSte, and the HPS paste, respectively, all haviogahbiopolymer concentration of 15

wt%; C) Light-microscopic images of the dyed 5:3vilvHPMC/HPS paste of 3 wt% total biopolymer corteation at 25 °C, 45 °C, and 85 °C,

respectively.
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Highlights:

v Hydroxypropyl methylcellulose (HPMC) and hydroxypropyl starch (HPS) mixture studied
v' Strong rheological and gelation effects on the phase structure of HPMC/HPS shown

v' HPMC/HPS blend ratio and temperature controls continuous/discrete phase change

v’ Phase structure correlated to zero-shear viscosity and Arrhenius coefficient o

v A schematic model to describe the temperature-induced conformational change
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