77 research outputs found

    Dynamics of Hexapods with Fixed-Length Legs

    Get PDF

    Path Tracking of a Wheeled Mobile Manipulator through Improved Localization and Calibration

    Get PDF
    This chapter focuses on path tracking of a wheeled mobile manipulator designed for manufacturing processes such as drilling, riveting, or line drawing, which demand high accuracy. This problem can be solved by combining two approaches: improved localization and improved calibration. In the first approach, a full-scale kinematic equation is derived for calibration of each individual wheel’s geometrical parameters, as opposed to traditionally treating them identical for all wheels. To avoid the singularity problem in computation, a predefined square path is used to quantify the errors used for calibration considering the movement in different directions. Both statistical method and interval analysis method are adopted and compared for estimation of the calibration parameters. In the second approach, a vision-based deviation rectification solution is presented to localize the system in the global frame through a number of artificial reflectors that are identified by an onboard laser scanner. An improved tracking and localization algorithm is developed to meet the high positional accuracy requirement, improve the system’s repeatability in the traditional trilateral algorithm, and solve the problem of pose loss in path following. The developed methods have been verified and implemented on the mobile manipulators developed by Shanghai University

    Folding Methodology for Flexible Aircraft Interiors

    Get PDF
    This paper establishes a general furniture folding methodology that is aimed at flexible aircraft cabin interiors. This methodology will allow users to modify existing furniture pieces to their liking and thereby customizing their overall travel experience. The folding methodology also includes a process to quantify the transformation of the furniture pieces. This paper also introduces two design concepts called Open-on-Demand and Reconfiguration to allow passengers to modify an otherwise rigid cabin. The advantages of the multi-functional space saving furniture pieces are also illustrated in this paper. While the general folding methodology was developed for aircraft interiors, it can be adapted for any furniture piece positioned within any environment

    Maximum likelihood estimation-assisted ASVSF through state covariance-based 2D SLAM algorithm

    Get PDF
    The smooth variable structure filter (ASVSF) has been relatively considered as a new robust predictor-corrector method for estimating the state. In order to effectively utilize it, an SVSF requires the accurate system model, and exact prior knowledge includes both the process and measurement noise statistic. Unfortunately, the system model is always inaccurate because of some considerations avoided at the beginning. Moreover, the small addictive noises are partially known or even unknown. Of course, this limitation can degrade the performance of SVSF or also lead to divergence condition. For this reason, it is proposed through this paper an adaptive smooth variable structure filter (ASVSF) by conditioning the probability density function of a measurementto the unknown parameters at one iteration. This proposed method is assumed to accomplish the localization and direct point-based observation task of a wheeled mobile robot, TurtleBot2. Finally, by realistically simulating it and comparing to a conventional method, the proposed method has been showing a better accuracy and stability in term of root mean square error (RMSE) of the estimated map coordinate (EMC) and estimated path coordinate (EPC)

    A compliant-mechanism-based lockable prismatic joint for high-load morphing structures

    Get PDF
    Lockable joints are widely used in robotic systems and adaptive structures for energy management and/or topology reconfiguration. However, it is still challenging to design a joint with desired properties, including high locking load, infinite locking positions, short switching time, energy-efficient control, and a compact and lightweight structure. This paper aims at this open problem by presenting a novel piezoelectric (PZT) actuated lockable prismatic joint. This joint is a compliant mechanism (CM) consisting of a compound bridge-type compliant mechanism (CBCM) and a pair of compound multibeam parallelogram mechanisms (CMPMs). It can produce the required input/output stiffness to transmit large forces for high-load locking. It can also provide a desired input/output motion range for PZT actuation-based unlocking and for facilitating preloading adjustment. An analytical model is presented based on a compliance matrix method and the nonlinear model of the CMPM to predict the joint's static characteristics under various input/output conditions. A two-step optimization framework is proposed for locking applications. The theoretical study and nonlinear FEA/experimental verification confirm the feasibility of the design and the accuracy of the proposed model

    Nanoplanktonic diatom rapidly alters sinking velocity via regulating lipid content and composition in response to changing nutrient concentrations

    Get PDF
    Diatom sinking plays a crucial role in the global carbon cycle, accounting for approximately 40% of marine particulate organic carbon export. While oceanic models typically represent diatoms as microphytoplankton (> 20 μm), it is important to recognize that many diatoms fall into the categories of nanophytoplankton (2-20 μm) and picophytoplankton (< 2 μm). These smaller diatoms have also been found to significantly contribute to carbon export. However, our understanding of their sinking behavior and buoyancy regulation mechanisms remains limited. In this study, we investigate the sinking behavior of a nanoplanktonic diatom, Phaeodactylum tricornutum (P. tricornutum), which exhibits rapid changes in sinking behavior in response to varying nutrient concentrations. Our results demonstrate that a higher sinking rate is observed under phosphate limitation and depletion. Notably, in phosphate depletion, the sinking rate of P. tricornutum was 0.79 ± 0.03 m d-1, nearly three times that of the previously reported sinking rates for Skeletonema costatum, Ditylum brightwellii, and Chaetoceros gracile. Furthermore, during the first 6 h of phosphate spike, the sinking rate of P. tricornutum remained consistently high. After 12 h of phosphate spike, the sinking rate decreased to match that of the phosphate repletion phase, only to increase again over the next 12 hours due to phosphate depletion. This rapid sinking behavior contributes to carbon export and potentially allows diatoms to exploit nutrient-rich patches when encountering increased nutrient concentrations. We also observed a significant positive correlation (P< 0.001) between sinking rate and lipid content (R = 0.91) during the phosphate depletion and spike experiment. It appears that P. tricornutum regulates its sinking rate by increasing intracellular lipid content, particularly digalactosyldiacylglycerol, hexosyl ceramide, monogalactosyldiacylglycerol, and triglycerides. Additionally, P. tricornutum replaces phospholipids with more dense membrane sulfolipids, such as sulfoquinovosyldiacylglycerol under phosphate shortage. These findings shed light on the intricate relationship between nutrient availability, sinking behavior, and lipid composition in diatoms, providing insights into their adaptive strategies for carbon export and nutrient utilization
    • …
    corecore