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A Real-Time Method for Solving
the Forward Kinematics of a
Tripod With Fixed-Length Legs
This paper presents a real-time method for solving the forward kinematics of a tripod
with fixed-length legs. The basic idea is to model the problem at hand based on a spatial
four-bar linkage through which three sliding legs can be interrelated by choosing one link
as a driving variable and other two links as driven variables. As a result, the original
multivariable nonlinear problem with three variables can be reduced to one variable
problem. A complete approach is provided to solve the unitary nonlinear programing
problem. This includes a method for solving the implicit functions in terms of the driving
and driven variables, and an approximation method for selecting an initial value leading
to a fast solution. The simulation results show that (i) the method is effective, (ii) can
reach very accurate results within five iterations for an error bound of 10−10, and (iii)
numerically very stable. The experiment results show that the proposed forward kine-
matic method is fast enough to be implemented in real time to provide an accurate
prediction of the tool pose from the joint encoder measurement.
�DOI: 10.1115/1.2114928�
1 Introduction
Parallel kinematic machines �PKMs� represent the most recent

radical change in machine-tool history. Unlike traditional machine
tools, which are based on the serial structure, PKMs are developed
utilizing the parallel structure. The initial development of PKMs
involved simply inverting the Gough-Stewart platform, which is a
prismatic parallel mechanism with extensible legs. Because these
PKMs have six legs, they are called hexapods. Examples of this
type of hexapods include VARIAX from Gidding & Lewis; Tor-
nado from Hexel Corp; and Geodetic from Geodetic Technology
Ltd. Later development resulted in the hexapods with fixed-leg
lengths. Examples of this type of hexapods include Hexaglide of
the Swiss Federal Institute of Technology, LINAPID of Stuttgart
University, and HEXAM of Toyoda �1�.

Since machining operation requires a maximum of five axes,
recent development has focused on tripods, i.e., three-axis PKMs.
Examples include Triaglide and Tricept �2�. Tripods can be com-
bined with two-axis serial systems, such as x-y stages, to form
five-axis machines that can offer advantages from both serial and
parallel structures �1�.

Kinematics plays an important role in PKM motion control.
The inverse kinematics solves the actuator motions based on that
of the moving platform. For parallel mechanisms, the inverse ki-
nematics is relatively easy to solve, as usually there exist closed-
form solutions. However, it is relatively difficult to obtain closed-
form solutions for the forward kinematics that solves the motion
of the moving platform based on the actuator motions. For ma-
chining applications, the forward kinematics is particularly useful
for predicting the position and orientation of the tool tip or even
forming a Cartesian-based control system �1�.

The forward kinematics is a classical problem that has been
studied for many years. The methods archived in the literature
generally can be classified into analytical method and numerical
method. The former include closed-form solutions �3,4� and poly-
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nomial equations �5–7�. The numerical method includes linear and
nonlinear programing �8–11�. Each of these methods has advan-
tages and limitations compared to the others. The closed-form
solutions only exist for very simple structures. Though polynomial
equations would provide all the solutions, they are usually in
higher orders and difficult to solve. The nonlinear programing
method is easy for modeling, but may encounter convergent prob-
lems. The linear programing method is based on the Jacobian
Matrix, and it may have stability problems at singular configura-
tions �12�.

Recent papers �6,7� focused on the methodology that solves the
forward kinematics for 3-PRS and 3-RS mechanisms, respec-
tively. They used Bezout’s elimination method to solve 3-PRS and
3-RS nonlinear constraint functions and derived 16th-order poly-
nomials with only one variable solved numerically. In �13�, Merlet
proposed a method to reduce this problem to eighth-order polyno-
mials, and also solved numerically. Since these methods generate
all possible solutions, an elimination procedure is required to de-
lete imaginary solutions while retaining real ones.

In this paper a new method is presented for real-time imple-
mentation of the forward kinematics for a tripod with fixed-length
legs. The basic idea is to model the problem at hand based on a
spatial four-bar linkage through which three sliding legs can be
interrelated by choosing one link as a driving variable and the
other two links as driven variables. As a result, the original mul-
tivariable nonlinear problem with three variables can be reduced
to one variable problem, a similar idea to �6,7,13�. The difference,
however, is that the proposed method solves second order poly-
nomials with only real solutions that are sufficiently fast for real-
time applications. In what follows, a complete approach is de-
scribed, including a method for solving the implicit functions in
terms of the driving and driven variables, and an approximation
method for selecting an initial value leading to a fast solution. A
number of tests are carried out to show the effectiveness of the
method for real-time implementation.

2 Forward Kinematics Modeling

2.1 Hybrid Machine. The system under consideration is a
tripod �parallel structure� with three fixed-length legs that can be
combined with an x-y stage �serial structure� to form a five-axis

machine. Figure 1�a� shows the design of the hybrid machine
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developed at Ryerson University. This machine has been con-
structed and fully implemented under computer control, as shown
in Fig. 1�b�. For manufacturing applications, such as polishing,
the real-time forward kinematics is an important enabling technol-
ogy. With this technology, the pose of a tool can be determined in
real time from online joint encoder measurement. The manufac-
turing functions arising from this technology include part-tool
alignment and part profile measurement �reverse engineering�.
These functions have been implemented on the hybrid machine
developed at Ryerson University. The key to this accomplishment
is the real-time forward kinematics method, which is to be de-
scribed in the following sections. The kinematics analysis of an
x-y stage is trivial.

2.2 Notation for Modeling the Tripod. As shown in Fig. 2,
the tripod consists of a moving platform �MP� to which a tool is
attached and three legs sliding along the guideways that are
mounted on the support structure, including the base platform
�BP�. Each leg is connected at one end to the guideway by a
revolute joint and at the other end to the MP by a spherical joint.
The coordinate system used is given in Fig. 2. The fixed global
coordinate system O-xyz is attached to the BP, and a local coor-
dinate system C-x�y�z� is attached to the MP. The symbols used
are given in Table 1.

2.3 Problem and Its Equations. The problem of the forward
kinematics can be stated as the input variables, si�i=1,2 ,3�, are
known, the output variables, pi�i=1,2 ,3�, need to be solved. Once
pi is obtained, the position and orientation of the moving platform
can be readily determined using the three-point method.

Referring to Figure 2, pi can be expressed as

pi = bi + si + li �for i = 1 – 3� �1�

and li can be expressed as

li = �− li cos��i + �i0�cos �i

− li cos��i + �i0�sin �i li sin��i + �i0�� �for i = 1 – 3� �2�

It can be seen from Eqs. �1� and �2� that solving pi, in fact, re-
quires solving �i, because the rest are either given or constants.

Furthermore, pi is confined in the moving platform defined as
Fig. 1 „a… Design model of the hybrid machine and „b… Proto-
ripod with fixed-length legs
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�pi − pj� = lp �for i, j = 1 – 3, j � i� �3�

where lp is the side length of the triangle plate of the moving
platform.

If Eq. �2� is substituted into Eq. �1�, which is then substituted
into Eq. �3�, then this will yield three nonlinear equations in terms
of three unknowns �i. Though conventional nonlinear programing
methods could be used to solve this problem, a more effective
method is presented here that utilizes the special features of the
tripod.

2.4 Problem Simplification. Inspired by the way of solving
the planar four-bar linkages, two spatial four-bar linkages s2p2p1s1
and s2p2p3s3, are introduced and they are indicated by the dashed
lines in Fig. 2. Here s2p2 is assumed to be the driving bar, and
p1s1 and p3s3 are driven by it. With this approach, the output angle
�1 and �3 can be expressed as a function of input angle �2; that is,

�1 = �1��2� �4�

�3 = �3��2� �5�

Equations �4� and �5� are implicit functions, which will be dis-
cussed in Sec. 3.

To obtain �2, it is only required to solve the following one of
the three equations given in Eq. �3�; that is, i=1, j=3

�p1 − p3� = lp �6�

Once �2 is solved, �1 and �3 can be determined from Eqs. �4� and
�5�, and subsequently all three pi can be solved. With this formu-
lation, instead of solving three nonlinear equations, it solves one
nonlinear equation.

2.5 Programing Model. To this end, a unitary nonlinear pro-
graming model is defined for the forward kinematics in terms of
�2

min
x=�2

f�x� = ��p1 − p3� − lp�2 �7�

where

pi = pi��i� = pi��2�, �i = �i��2� �for i = 1 and 3� �8�

subjected to

0 ° � �2,min � �2 � �2,max � 180° �9�

where �2,min and �2,max represent the angle range of the second
sliding leg.

Note that Eq. �7� is in the form of second-order polynomials.
The main steps for programing are given as follows in quasi

Table 1 Definition of the symbols used in Fig. 1

Symbol Definition

bi Indicates the position of one end of the ith guideway
attached to the base

si Indicates the position of the ith revolute joint
pi Indicates the position of the ith spherical joint
bi Vector from O to bi

si Vector from bi to si

li Vector from si to pi

pi Vector from O to pi

�I Represents the relative angle between the ith guideway
and the x axis

�I Represents the angle between the ith sliding-leg and the
ith guideway

�io Represents the angle between the ith guideway and the
BP
codes:
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3 Analysis of Spatial Four-Bar Linkage
The purpose here is to relate �1 and �3 to �2 as implicitly

expressed in Eqs. �4� and �5�. As mentioned before, the concept of
a spatial four-bar linkage is used.

3.1 Spatial Four-Bar Linkage Model. Figure 3 represents a
spatial four-bar linkage SjPjPiSi, where Si and Sj are rotation
joints, and Pi and Pj are spherical joints. SjPj is a driving bar, and
SiPi is a driven bar. The lengths of the bars are lj,lp, and li. The
position Si and Sj, and input angle � j are all known. The output
angle �i is to be determined.

It is known that the degrees of freedom �DOF� of this mecha-

Fig. 3 Spatial four-bar linkage model of the tripod
nism is equal to 1, so �i can be expressed as
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�i = �i�� j� �10�
Equation �10� is a general form of Eqs. �4� and �5�.

By substituting Eq. �1� into Eq. �3�, yielding

�bi + si + li − pj� = lp �11�
Let

mij = bi + si − pj = mij�� j� �12�
Then Eq. �11� becomes

�li + mij�2 = lp
2 �13�

where mij = �mijx ,mijy ,mijz�, and mij is an explicit function of � j.
Substituting Eq. �2� into Eq. �13� results in

li
2 + mij

2 − 2mijxli cos��i�cos��i + �i0� − 2mijyli sin��i�cos��i + �i0�

+ mijzli sin��i + �i0� = lp
2 �14�

Equation �14� is the equation that only �i is to be solved.

3.2 Solving the Equations. Set

�a = − 2mijxli cos��i� − 2mijyli sin��i�
b = 2mijzli

c = lp
2 − li

2 − mij
2 	 �15�

Rewriting Eq. �14� leads to

a cos��i + �i0� + b sin��i + �i0� = c �16�
Solving Eq. �16� gives the following solutions:

�
� = tg−1�b/a� � �0, 360�

� = cos−1
 c
�a2 + b2� � �0,180�

�i = � − �i0 ± � � �− 180,180�
	 �17�

There are two solutions to �i��i1 ,�i2�. Here, a larger value of the
two is selected based on the reason given in Appendix B

�i = max��i1,�i2� �18�

3.3 Computation Steps. When � j is given, the steps to com-
pute �i are summarized as follows:

1. Given � j
2. Compute lj based on Eq. �2�
3. Compute pj based on Eq. �1�
4. Compute mij based on Eq. �12�
5. Compute �i based on Eqs. �15�–�18�

4 Determination of Initial Value �2
„0…

4.1 Approximation Solution. Selecting an initial value of
�2

�0� closer to final �2 can reduce iteration times for solving the

Fig. 4 Relationship betw
nonlinear programing defined in Eqs. �7�–�9�. To do so, a special
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position of MP is chosen, in which the second leg is located on its
real position, while the positions of the first sliding-leg and the
third’s are at the average value of the two, i.e.,

s2
�0� = s2

s1
�0� = s3

�0� = 1
2 �s1 + s3� � �19�

where the superscript 0 represents an initial value, and si
�0� repre-

sents the initial value of si.
The reason for choosing the average value of s1 and s3 is that

�2 changes little. Figure 4 shows four poses where the average
value of s1 and s3 is the same. As you can see from Fig. 4, �2 has
little change. Also, this approximate position is easy to analyze.

To solve the forward kinematic model, the spatial four bar link-
age model needs to be analyzed, but the conditions are different
from the ones introduced in Sec. 4, and the method is discussed in
Sec. 4.2.

4.2 Spatial Four-Bar Linkage Model. According to the con-
dition in Eq. �19�, at the approximate position, the following
holds:

�3
�0� = �1

�0� �20�

In light of Eqs. �1�–�3�, the approximate position can be expressed
as

li
�0� = �− li cos��i

�0� + �i0�cos �i

− li cos��i
�0� + �i0�sin �ili sin��i

�0� + �i0��
�21�

pi
�0� = bi + si

�0� + li
�0� �for i = 1,3�

�p1
�0� − p3

�0�� = lp

where pi
�0� is the approximate position to pi, and li

�0� is the approxi-
mate vector to li Equation �21� is the equation for the spatial four
bar linkage model. By solving it, �1

�0� and �3
�0� can be obtained,

subsequently, �2
�0� can be obtained by using the method introduced

in Sec. 3.

4.3 Solving the Equations. Let

q = �qx,qy,qz� = �b3 + s3
�0�� − �b1 + s1

�0�� �22�

Simplifying Eq. �21� yields

��qx,0,0� + �− �3l1 cos��1
�0� + �10�,0,0�� = lp �23�

It is obvious that

qx � �3l1 cos��1
�0� + �10� �24�

n �2 and the pose of MP
ee
Solving Eq. �23� results in
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�� = cos−1
qx − lp

�3l1
� � �0,180�

�1 + �10 = ± �
	 �25�

Thus,

�1 = ± � − �10 �26�
This leads two answers, and the positive operating sign should be
chosen. The reason is given in Appendix B.

4.4 Computation Steps.

1. Assign s1
�0�, s2

�0�, and s3
�0� based on Eq. �19�

2. Compute q using Eq. �22�
3. Compute �1

�0� using Eqs. �25� and �26�
4. Determine �3

�0� using Eq. �20�
5. Determine �2

�0� as described in Sec. 3

5 Testing

A number of tests are carried out on the tripod available at
Ryerson University with the sizes given in Appendix A. These
tests include convergence, stability, accuracy from forward to in-
verse, and accuracy from inverse to forward.

5.1 Convergence. In this test, several test points are chosen,
but because of space limitations only two results of computing �2
are shown in Fig. 5. In Figs. 5�a� and 5�b�, the polylines are drawn
in logarithm scale, and in Figs. 5�c� and 5�d�, the straight lines are
drawn in linear scale. The left-most points in each figure are the
initial points. Along each line, there are four points, namely,
��2

�0� ,	2
�0��, ��2

�1� ,	2
�1��, ��2

�2� ,	2
�2��, and ��2

�3� ,	2
�3��, representing the

initial, first iteration, second iteration, and third iteration, respec-
tively. The last point is the final solution.

In Figs. 5�a� and 5�c�, 
�2
�0� is set to 1.0 and the initial error is

−0.028. After the first iteration, the error becomes bigger at 0.265.
However, after the line-acceleration is applied for the second it-
eration, the error is reduced to 1.0�10−3. Furthermore, after the
parabola-acceleration is applied for the third iteration, the error is
further reduced to 1.0�10−7, taken as the final solution.

In Figs. 5�b� and 5�d�, 
�2
�0� is set smaller at 0.1 and the initial

error is the same as the first case. After the first iteration, the error

Fig. 5 Convergen
becomes smaller at 0.0025. After the line acceleration is applied
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for the second iteration, the error is reduced to 1.0�10−5. After
the parabola acceleration is applied for the third iteration, the error
is further reduced to 1.0�10−11, taken as the final solution.

From the test results given above, the following observations
are obtained. First, the first iteration may degrade the solution;
that is, the second point ��2

�1� ,	2
�1�� may be worse than the initial

point ��2
�0� ,	2

�0��. However, the acceleration algorithms �line and
parabola� would quickly improve the results. In order words, the
third point ��2

�2� ,	2
�2�� is much better than the previous solutions,

and the fourth point ��2
�3� ,	2

�3�� is much better than the third point

��2
�2� ,	2

�2��. Second, the initial value has a great influence on the

results. However,
�2
�0�=0.1 is recommended to achieve a good

convergence regardless of initial values.
The convergence time tested on a PC of Inter P4 2.8 GHz CPU,

256 MB DDR Memory is 24.45 �s using Borland C Builder
6.0. This time would vary when it is tested under different pro-
graming languages or machines.

5.2 Stability. The test on stability is to investigate how the
proposed method behaves at singular configurations. To do so,
singular configurations should be chosen. One such configuration
is to set s1=s3 for the first and the second sliding legs to form a
plane. As shown in Fig. 6, a singular configuration occurs when
the moving platform is coplanar with the aforementioned plane.
At this configuration, even given �y�0, ṡ1= ṡ2= ṡ3=0, i.e., the
tripod is singular. If the Jacobian-based numeric method were
used, it would encounter singularity problem, leading to instable
solutions. For the proposed method, it performs very quickly and
stably because in this case the initial values are the final solutions,
and there is no need for iteration at all.

5.3 Accuracy From Forward to Inverse. In Sec. 5.1, it has
been shown that the proposed method requires only four to five
iterations to reach convergent solutions with a tolerance of 10−10.
In this test, accuracy is discussed, first by looking at the problem
from forward kinematics to inverse kinematics. Here, si is given
first, and then pi is determined by the proposed method. After that,
the inverse kinematics is used to determine si�. The absolute error

for computing �2
ce
is defined as

Transactions of the ASME

s of Use: http://www.asme.org/about-asme/terms-of-use



Downloaded From
	i = �si� − si� �for i = 1 – 3� �27�

where 	i represents the absolute error of si; because the error is
relatively small, Eq. �27� is defined in logarithmic form

�i = log�	i� = log��si� − si�� �for i = 1 – 3� �28�

In Eq. �28�, �i represents the logarithmic absolute error of si.
Simulations are carried out and the results are shown in Fig. 7.

Here, the logarithm for absolute error is shown. The motion range
of si is 6 in., and the error is expressed with respect to position ID
numbered from 0 to 20.

In Figs. 7�a�–7�c� the error for termination of iterations is
�fmax�=10−6. The number of the average iterations is 4.5. In Fig.
6�d� �fmax�=10−10, the number of the average iteration times is
4.8. For Figures 7�a�–7�d�, si is evaluated by considering the
range of the other two. In other words, the whole evaluations are

Fig. 6 Singular configuration for testing
Fig. 7 Results for fo
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done by considering the entire work space of the tripod. As it can
be seen, the method is effective and can reach accurate results
within five iterations.

5.4 Accuracy From Inverse to Forward. In this test, the
pose of the moving platform pt and nt are given first, where pt and
nt denote the position and normal vectors of the tool attached to
the moving platform. Using the inverse kinematics method �1�, si

can be determined first. After that using the proposed method, pi�
is determined. Finally, the three-point method is applied to deter-
mine pt� and nt�. The absolute error is defined as

	t = � pt� − pt� �29�

where 	t represent the absolute error for the tool position. Because
this error is very small, it is also defined in logarithmic form

�t = log�	t� = log�� pt� − pt�� �30�

were �t represent logarithm for the absolute error 	t.
In the test, the tool path used is set as

�
R = 6

ntx
�i� = cos��i� · sin��i�

nty
�i� = sin��i� · sin��i�

ntz
�i� = cos��i�

pt
�i� = − R · nt

�i� + �0 0 20�
�i = i · 2 deg �i = 0,1, . . . ,360�

�i = �360 − i · �0.125 deg �i = 0,1, . . . ,360�

	 �31�

This is, in fact, the outer surface of a ball. Here, nt
�i�

= �ntx
�i�nty

�i�ntz
�i�� represents the tool direction vector, it is opposite to

the normal vector of the surface, pt
�i� represents the ith point lo-

cated on the surface, �i is the angle around z axis, �i is the angle
between nt

�i� and z axis. The error for termination of iterations is
rward to inverse
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set at 10−10.
Figure 8 shows the results for this testing. Here the tool path is

represented by point ID along the tool path numbered from 0 to
360, and in total there are 361 points. Figure 8�a� shows the ab-
solute error along the given tool path. Figure 8�b� is the logarithm
of the absolute error. It can be seen that the maximum error is
within the set error bound of 10−10. Figure 8�c� shows the position
of the three revolute joints. Figure 8�d� shows the relative move-
ments of the central point of the moving platform.

5.5 Experiment. The proposed method has been programed
in C and implemented in the hybrid machine �tripod plus an x-y
stage� available at Ryerson University. The program is used to
compute the pose of the tool tip in real time based on the joint
encoder measurement.

The experiment reported here was done by planning a real tool
path as shown in Fig. 9. The tool is moving around a circle while
keeping an angle of 15 deg from the vertical direction. As shown
in Fig. 9, it forms a cone shape. The tool tip is pointing down. The
smaller circle is the path of the tool tip that represents the tool
position, whereas the larger circle is the path of the platform cen-

Fig. 8 Results fo
Fig. 9 Tool path for
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ter. The straight lines represent the tool orientation.
The inverse kinematics method is used to compute the com-

mand joint variables, based on which the joints controllers drive
the machine. The forward kinematics method is used to estimate
the error in the pose of the moving platform.

Figure 10 shows the experiment results. Figure 10�a� is the
command joint positions corresponding to the tool path in Fig. 9.
Figure 10�c� represents the errors for all joints, i.e., the difference
between the command values and the encoder reading. Figure
10�b� represents the absolute errors for the tool position, and Fig.
10�d� represents the absolute errors for the tool orientation. The
actual pose of the tip is computed online using the proposed for-
ward kinematic method and encoder measurement data. The sam-
pling frequency is at 1 KHz. The results are compared to the
planned tool path to determine the errors. As it may be seen from
Fig. 9, the pose error is in the same magnitude of the joint errors,
indicating that the major source of the error comes from the joints.
In order words, the proposed forward kinematic method is fast
enough to be implemented in real time to provide accurate results
for predicting the tool pose.

verse to forward
r in
experiment test
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6 Comparison With Other Methods
In this section, the method proposed in this paper is compared

to the methods proposed by Merlet �13� and Zhang �14�. All the
three methods follow the same idea, i.e., converting the underly-
ing problem into one variable. However, the equations used in the
first method are second-order polynomials with one explicit and
two implicit variables, whereas the last two methods are in eighth-
order polynomials with only one explicit variable. Though all the
three methods are solved numerically, the solutions obtained from
the last two methods contain all possible solutions, including
imaginary ones. The first method is only aimed at finding the real
solutions. Nevertheless, it can also find all possible solutions,
when needed, by choosing another set of signs in Eqs. �17� and
�25�.

Computationally speaking, the first method is superior to the
last two. This can be understood by counting the number of op-
erations from Eqs. �1�–�26�. To perform a forward kinematics
analysis, 10 triangle functions, 50 multiply or division operations,
and 5 square-root operations are calculated. Note that in Eq. �15�,
li cos��i� and li sin��i� only need to be calculated one time. For
the last two methods, the resulting equations are extremely
lengthy, expressed in terms of �270 multiplication operations.
After some simplification, it still needs �60 multiplication and 8
triangle functions to calculate the first set of parameters. After
that, an eighth-order polynomial equation must be solved numeri-
cally. Obviously the method proposed in this paper is computa-
tionally less complex and, therefore, more efficient—ideal for
real-time applications �15�.

7 Concluding Remarks
In this paper, a real-time computational method is developed for

the forward kinematics analysis of a sliding-leg tripod. Through
the introduction of a spatial four-bar linkage model, three sliding
legs can be interrelated by choosing one as a driving variable and

Fig. 10 Test results for the
other two are driven variables. As such, the original multivariable
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nonlinear problem with three variables is reduced to one-variable
problem. A complete approach is provided to solve the unitary
nonlinear programing. The methods are provided to solve the im-
plicit functions in terms of the driving and driven variables. An
approximation method is put forward to select an initial value
leading to a faster solution. A number of tests are carried out and
the results have shown that �i� the method is effective, �ii� can
reach very accurate results within five iterations, and �iii� numeri-
cally stable.

The method has been implemented on the tripod at Ryerson
University for various applications, including prediction of the
tool tip, part alignments, and part profile measurement. The ex-
periment results show that the proposed forward kinematic
method is fast enough to be implemented in real time with accu-
rate results. The proposed method is also suitable for direct kine-
matic method for other types of tripods, including 3-RPS with
fixed or nonfixed leg length, or 3-RS mechanisms, and applicable
to 6-degree-of-freedom parallel mechanisms, in general.
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Appendix A: Tripod Sizes Used in This Paper
1. Sizes of Tripod

lp = 6.0 in. �A1a�

li = 8.67 in. �for i = 1 – 3� �A1b�

lg = 6.0 in. �A1c�

ipod at Ryerson University
�0 = �i0 = 20 deg �for i = 1 – 3� �A1d�

FEBRUARY 2006, Vol. 128 / 211

s of Use: http://www.asme.org/about-asme/terms-of-use



Downloaded From
lb = 6.0 + 1
2 lg sin��0� = 10.444 in. �A1e�

where lb and lp are the side length of the triangle plates of
the base and moving platform, respectively. lg and li are the
lengths of the ith guideway and the sliding legs. �i0 is the
angle between the ith guideway and the base platform.

2. Position of Base Platform (BP)

b1 = �b1x

b1y

b1z
� = �

− lb

2

− �3lb

6

0
� �A2a�

b2 = �b2x

b2y

b2z
� = �

0

�3lb

3

0
� �A2b�

b3 = �b3x

b3y

b3z
� = �

lb

2

− �3lb

6

0
� �A2c�

3. Position of Moving Platform (MP)
Measured at local coordinate C−x�y�z� attached to MP

�see Fig. 2�

p1� = �p1x�

p1y�

p1z�
� = �

− lp

2

− �3lp

6

0
� �A3a�

p2� = �p2x�

p2y�

p2z�
� = �

0

�3lp

3

0
� �A3b�

p3� = �p3x�

p3y�

p3z�
� = �

lb

2

− �3lb

6

0
� �A3c�

Appendix B: Solution Selection
In this section, a method is presented for selection of the solu-

tions to �i�i=1,3�. To do so, the plane of O−bisipi is inspected.
Figure 11 shows the plane of O−bisipi. In this figure, pj

�p� is the
projection of pj, and

�i1 � 0

�i2 � 0
� �B1�

From Fig. 11, it can be seen that �i1 is the real solution. On the
contrary, � is the imagery solution, p is the real position, and p�
i2 i i
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is the imagery position, for the simple reason that the two points
pj

�p� and pi are always mirrored each other about the line bisi.
Therefore, the solution given in Eq. �18� is valid.

Furthermore, from Fig. 10, it can also be seen that

�i
�0� + �i0 � 0 �B2�

Thus, Eq. �26� should always select a positive sign.
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