156 research outputs found

    Information core optimization using Evolutionary Algorithm with Elite Population in recommender systems

    Get PDF
    Recommender system (RS) plays an important role in helping users find the information they are interested in and providing accurate personality recommendation. It has been found that among all the users, there are some user groups called “core users” or “information core” whose historical behavior data are more reliable, objective and positive for making recommendations. Finding the information core is of great interests to greatly increase the speed of online recommendation. There is no general method to identify core users in the existing literatures. In this paper, a general method of finding information core is proposed by modelling this problem as a combinatorial optimization problem. A novel Evolutionary Algorithm with Elite Population (EA-EP) is presented to search for the information core, where an elite population with a new crossover mechanism named as ordered crossover is used to accelerate the evolution. Experiments are conducted on Movielens (100k) to validate the effectiveness of our proposed algorithm. Results show that EA-EP is able to effectively identify core users and leads to better recommendation accuracy compared to several existing greedy methods and the conventional collaborative filter (CF). In addition, EA-EP is shown to significantly reduce the time of online recommendation

    Molybdate intercalated nickel–iron-layered double hydroxide derived Mo-doped nickel–iron phosphide nanoflowers for efficient oxygen evolution reaction

    Get PDF
    The design of a highly efficient electrocatalyst for oxygen evolution reaction (OER) is of great significance to the clean energy conversion system. Herein, novel Mo-doped NiFe phosphide (Mo-NiFe-P) nanoflowers are developed as robust high-activity catalysts for OER via the phosphidation of MoO42− intercalated NiFe-layered double hydroxide (NiFe-LDH). The introduction of high valence Mo can significantly promote the catalytic activity of OER because of the strong electronic interactions with Ni and Fe. By tailoring the amount of molybdate intercalated into NiFe-LDH, the optimal phosphide shows outstanding overpotentials of 261 and 272 mV to drive current densities of 50 and 100 mA cm−2 in 1 mol L−1 KOH. This work demonstrates that the amount of molybdate influences the structure of phosphide prepared by the intercalated LDHs and also affects the electrocatalytic behavior. In addition, density functional theory (DFT) calculations show that introducing Mo could alter the intrinsic electronic structure of NiFe-P, which, in turn, could accelerate the reaction kinetics. This approach could be extended to the preparation of other cost-efficient phosphides for OER

    Accuracy of triage strategies for human papillomavirus DNA-positive women in low-resource settings: A cross-sectional study in China

    Get PDF
    CareHPV is a human papillomavirus (HPV) DNA test for low-resource settings (LRS). This study assesses optimum triage strategies for careHPV-positive women in LRS

    The association between gene polymorphisms in voltage-gated potassium channels Kv2.1 and Kv4.2 and susceptibility to autism spectrum disorder

    Get PDF
    BackgroundAutism spectrum disorder (ASD) is a heritable form of neurodevelopmental disorder that arises through synaptic dysfunction. Given the involvement of voltage-gated potassium (Kv) channels in the regulation of synaptic plasticity, we aimed to explore the relationship between the genetic variants in the KCNB1 and KCND2 genes (encoding Kv2.1 and Kv4.2, respectively) and the risk of developing ASD.MethodsA total of 243 patients with ASD and 243 healthy controls were included in the present study. Sixty single nucleotide polymorphisms (SNPs) (35 in KCNB1 and 25 in KCND2) were genotyped using the Sequenom Mass Array.ResultsThere were no significant differences in the distribution of allele frequencies and genotype frequencies in KCNB1 between cases and controls. However, the differences were significant in the allelic distribution of KCND2 rs1990429 (pBonferroni < 0.005) and rs7793864 (pBonferroni < 0.005) between the two groups. KCND2 rs7800545 (pFDR = 0.045) in the dominant model and rs1990429 (pFDR < 0.001) and rs7793864 (pFDR < 0.001) in the over-dominant model were associated with ASD risk. The G/A genotype of rs1990429 in the over-dominant model and the G/A–G/G genotype of rs7800545 in the dominant model were correlated with lower severity in the Autism Diagnostic Interview-Revised (ADI–R) restricted repetitive behavior (RRB) domain.ConclusionOur results provide evidence that KCND2 gene polymorphism is strongly associated with ASD susceptibility and the severity of RRB

    Loss of Asxl1 Alters Self-Renewal and Cell Fate of Bone Marrow Stromal Cell, Leading to Bohring-Opitz-like Syndrome in Mice

    Get PDF
    De novo ASXL1 mutations are found in patients with Bohring-Opitz syndrome, a disease with severe developmental defects and early childhood mortality. The underlying pathologic mechanisms remain largely unknown. Using Asxl1-targeted murine models, we found that Asxl1 global loss as well as conditional deletion in osteoblasts and their progenitors led to significant bone loss and a markedly decreased number of bone marrow stromal cells (BMSCs) compared with wild-type littermates. Asxl1(-/-) BMSCs displayed impaired self-renewal and skewed differentiation, away from osteoblasts and favoring adipocytes. RNA-sequencing analysis revealed altered expression of genes involved in cell proliferation, skeletal development, and morphogenesis. Furthermore, gene set enrichment analysis showed decreased expression of stem cell self-renewal gene signature, suggesting a role of Asxl1 in regulating the stemness of BMSCs. Importantly, re-introduction of Asxl1 normalized NANOG and OCT4 expression and restored the self-renewal capacity of Asxl1(-/-) BMSCs. Our study unveils a pivotal role of ASXL1 in the maintenance of BMSC functions and skeletal development

    PSR J1926-0652: A Pulsar with Interesting Emission Properties Discovered at FAST

    Get PDF
    We describe PSR J1926-0652, a pulsar recently discovered with the Five-hundred-meter Aperture Spherical radio Telescope (FAST). Using sensitive single-pulse detections from FAST and long-term timing observations from the Parkes 64-m radio telescope, we probed phenomena on both long and short time scales. The FAST observations covered a wide frequency range from 270 to 800 MHz, enabling individual pulses to be studied in detail. The pulsar exhibits at least four profile components, short-term nulling lasting from 4 to 450 pulses, complex subpulse drifting behaviours and intermittency on scales of tens of minutes. While the average band spacing P3 is relatively constant across different bursts and components, significant variations in the separation of adjacent bands are seen, especially near the beginning and end of a burst. Band shapes and slopes are quite variable, especially for the trailing components and for the shorter bursts. We show that for each burst the last detectable pulse prior to emission ceasing has different properties compared to other pulses. These complexities pose challenges for the classic carousel-type models.Comment: 13pages with 12 figure
    • 

    corecore