7 research outputs found

    Stress‐induced Domain Wall Motion in a Ferroelastic Mn3+ Spin Crossover Complex

    Get PDF
    Domain wall motion is detected for the first time during the transition to a ferroelastic and spin‐state ordered phase of a spin crossover complex. Single crystal X‐ray diffraction and resonant ultrasonic spectroscopy (RUS) revealed two distinct symmetry‐breaking phase transitions in the mononuclear Mn 3+ compound [Mn(3,5‐diBr‐sal 2 (323))]BPh 4 , 1. The first at 250 K, involves the space group change Cc → Pc and is thermodynamically continuous, while the second, Pc → P1 at 85 K, is discontinuous and related to spin crossover and spin‐state ordering. Stress‐induced domain wall mobility was detected as softening of the phonon modes at the Pc → P1 transition

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)

    Simulations of magnetic microstructure in thin film elements used for programmable motion of magnetic particles

    No full text
    The results of two-dimensional micromagnetic modeling of magnetization patterns in Permalloy ellipses under the influence of rotating constant-amplitude magnetic fields are discussed. Ellipses of two different lateral sizes have been studied, 0.5m x 1.5m and 1m x 3m. The amplitude of the rotating magnetic field was varied between simulations with the condition that it must be large enough to saturate or nearly saturate the ellipse with the field applied along the long axis of the ellipse. For the smaller ellipse size it is found that the magnetization pattern forms an S state and the direction of the net magnetization lags behind the direction of the applied field. At a critical angle of the rotating magnetic field the direction of the magnetization switches by a large angle to a new S state. Both the critical angle and the angle interval of the switch depend on field amplitude. For this new state, it is instead the applied field direction that lags behind the magnetization direction. The transient magnetization patterns correspond to multi-domain patterns including two vortices, but this state never exists for the equilibrated magnetization patterns. The behavior of the larger ellipse in rotating field is different. With the field applied along the long-axis of the ellipse, the magnetization of the ellipse is nearly saturated with a vortex close to each apex of the ellipse. As the field is rotated, this magnetization pattern remains and the net-magnetization direction lags behind the direction of the field until for a certain angle of the applied field an equilibrium multi-domain state is created. Comparisons are made with corresponding experimental results obtained by performing in-field magnetic force microscopy on Permalloy ellipses

    Single crystal CVD diamond growth strategy by the use of a 3D geometrical model : Growth on (113) oriented substrates

    No full text
    The quality of single crystal diamond obtained by microwave CVD processes has been drastically improved in the last 5 years thanks to surface pretreatment of the substrates [A. Tallaire, J. Achard, F. Silva, R.S. Sussmann, A. Gicquel, E. Rzepka, Physica Status Solidi (A) 201, 2419-2424 (2004); G. Bogdan, M. Nesladek, J. D'Haen, J. Maes, V.V. Moshchalkov, K. Haenen, M. D'Olieslaeger, Physica Status Solidi (A) 202, 2066-2072 (2005); M. Yamamoto, T. Teraji, T. Ito, Journal of Crystal Growth 285, 130-136 (2005)]. Additionally, recent results have unambiguously shown the occurrence of (110) faces on crystal edges and (113) faces on crystal corners [F. Silva, J. Achard, X. Bonnin, A. Michau, A. Tallaire, O. Brinza, A. Gicquel, Physica Status Solidi (A) 203, 3049-3055 (2006)]. We have developed a 3D geometrical growth model to account for the final crystal morphology. The basic parameters of this growth model are the relative displacement speeds of (111), (110) and (113) faces normalized to that of the (100) faces, respectively alpha, beta, and gamma. This model predicts both the final equilibrium shape of the crystal (i.e. after infinite growth time) and the crystal morphology as a function of alpha, beta, gamma, and deposition time. An optimized operating point, deduced from the model, has been validated experimentally by measuring the growth rate in (100), (111), (110), and (113) orientations. Furthermore, the evolution of alpha, beta, gamma as a function of methane concentration in the gas discharge has been established. From these results, crystal growth strategies can be proposed in order, for example, to enlarge the deposition area. In particular, we will show, using the growth model, that the only possibility to significantly increase the deposition area is, for our growth conditions, to use a (113) oriented substrate. A comparison between the grown crystal and the model results will be discussed and characterizations of the grown film (Photoluminescence spectroscopy, EPR, SEM) will be presented. (C) 2008 Elsevier B.V. All rights reserved

    Domain Wall Dynamics in a Ferroelastic Spin Crossover Complex with Giant Magnetoelectric Coupling

    No full text
    International audiencePinned and mobile ferroelastic domain walls are detected in response to mechanical stress in a Mn3+ complex with two-step thermal switching between the spin triplet and spin quintet forms. Single-crystal X-ray diffraction and resonant ultrasound spectroscopy on [Mn-III(3,5-diCl-sal(2)(323))]BPh4 reveal three distinct symmetry-breaking phase transitions in the polar space group series Cc -> Pc -> P1 -> P1((1/2)). The transition mechanisms involve coupling between structural and spin state order parameters, and the three transitions are Landau tricritical, first order, and first order, respectively. The two first-order phase transitions also show changes in magnetic properties and spin state ordering in the Jahn-Teller-active Mn3+ complex. On the basis of the change in symmetry from that of the parent structure, Cc, the triclinic phases are also ferroelastic, which has been confirmed by resonant ultrasound spectroscopy. Measurements of magnetoelectric coupling revealed significant changes in electric polarization at both the Pc -> P1 and P1 -> P1((1/2)) transitions, with opposite signs. All these phases are polar, while P1 is also chiral. Remanent electric polarization was detected when applying a pulsed magnetic field of 60 T in the P1 -> P1((1/2)) region of bistability at 90 K. Thus, we showcase here a rare example of multifunctionality in a spin crossover material where the strain and polarization tensors and structural and spin state order parameters are strongly coupled

    Spin-Based Diagnostic of Nanostructure in Copper Phthalocyanine-C-60 Solar Cell Blends

    No full text
    For the first time, two types of the metallofullerene Nd@C82 have been isolated and characterized. HPLC was used to isolate Nd@C82(I, II). The two isomers were characterized by mass spectrometry and UV‐Vis‐NIR absorption spectroscopy. Nd@C82(I) was found to be similar in structure to the main isomer of other lanthanofullerenes such as La@C82, as was previously reported. We assign Nd@C82(I) to have a C2v cage symmetry. Nd@C82(II) showed a markedly different UV‐Vis‐NIR absorption spectrum to Nd@C82(I). Its spectrum is in good agreement with that of the minor isomer of metallofullerenes such as Pr@C82. We therefore assign Nd@C82(II) to have a Cs cage symmetry. In contrast to other metallofullerenes, both isomers appear to be equally abundant
    corecore