736 research outputs found

    Probing the nature of the χc1(3872)\chi_{c1}(3872) state using radiative decays

    Full text link
    The radiative decays χc1(3872)ψ(2S)γ\chi_{c1}(3872)\rightarrow\psi(2S)\gamma and χc1(3872)J/ψγ\chi_{c1}(3872)\rightarrow J/\psi\gamma are used to probe the~nature of the~χc1(3872)\chi_{c1}(3872) state using proton-proton collision data collected with the LHCb detector, corresponding to an~integrated luminosity of~9fb1^{-1}. Using the~B+χc1(3872)K+B^+\rightarrow \chi_{c1}(3872)K^+decay, the χc1(3872)ψ(2S)γ\chi_{c1}(3872)\rightarrow \psi(2S)\gamma process is observed for the first time and the ratio of its partial width to that of the χc1(3872)J/ψγ\chi_{c1}(3872)\rightarrow J/\psi\gamma decay is measured to be Γχc1(3872)ψ(2S)γΓχc1(3872)J/ψγ=1.67±0.21±0.12±0.04, \frac{\Gamma_{\chi_{c1}(3872)\rightarrow \psi(2S)\gamma}} {\Gamma_{\chi_{c1}(3872)\rightarrow J/\psi\gamma}} = 1.67 \pm 0.21 \pm 0.12 \pm0.04 , where the first uncertainty is statistical, the second systematic and the third is due to the uncertainties on the branching fractions of the ψ(2S)\psi(2S) and J/ψJ/\psi mesons. The measured ratio makes the interpretation of the χc1(3872)\chi_{c1}(3872) state as a~pure D0Dˉ0+Dˉ0D0D^0\bar{D}^{*0}+\bar{D}^0D^{*0} molecule questionable and strongly indicates a sizeable compact charmonium or tetraquark component within the χc1(3872)\chi_{c1}(3872) state.Comment: 31 pages, 2 figures. All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2024-015.html (LHCb public pages

    Search for the lepton-flavor violating decay Bs0 →φμ±τ

    Get PDF
    A search for the lepton-flavor violating decays Bs0→φμ±τ is presented, using a sample of proton-proton collisions at center-of-mass energies of 7, 8, and 13 TeV, collected with the LHCb detector and corresponding to a total integrated luminosity of 9 fb-1. The τ leptons are selected using decays with three charged pions. No significant excess is observed, and an upper limit on the branching fraction is determined to be B(Bs0→φμ±τ)<1.0×10-5 at 90% confidence level

    Search for Bc+π+μ+μB_c^+\to\pi^+\mu^+\mu^- decays and measurement of the branching fraction ratio B(Bc+ψ(2S)π+)/B(Bc+J/ψπ+){\cal B}(B_c^+\to\psi(2S)\pi^+)/{\cal B}(B_c^+\to J/\psi \pi^+)

    Get PDF
    The first search for nonresonant Bc+π+μ+μB_c^+\to\pi^+\mu^+\mu^- decays is reported. The analysis uses proton-proton collision data collected with the LHCb detector between 2011 and 2018, corresponding to an integrated luminosity of 9 fb1^{-1}. No evidence for an excess of signal events over background is observed and an upper limit is set on the branching fraction ratio B(Bc+π+μ+μ)/B(Bc+J/ψπ+)<2.1×104{\cal B}(B_c^+\to\pi^+\mu^+\mu^-)/{\cal B}(B_c^+\to J/\psi \pi^+) < 2.1\times 10^{-4} at 90%90\% confidence level. Additionally, an updated measurement of the ratio of the Bc+ψ(2S)π+B_c^+\to\psi(2S)\pi^+ and Bc+J/ψπ+B_c^+\to J/\psi \pi^+ branching fractions is reported. The ratio B(Bc+ψ(2S)π+)/B(Bc+J/ψπ+){\cal B}(B_c^+\to\psi(2S)\pi^+)/{\cal B}(B_c^+\to J/\psi \pi^+) is measured to be 0.254±0.018±0.003±0.0050.254\pm 0.018 \pm 0.003 \pm 0.005, where the first uncertainty is statistical, the second systematic, and the third is due to the uncertainties on the branching fractions of the leptonic J/ψJ/\psi and ψ(2S)\psi(2S) decays. This measurement is the most precise to date and is consistent with previous LHCb results.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-037.html (LHCb public pages

    A study of CP violation in the decays B±→[K+K-π+π-]Dh± (h= K, π) and B±→[π+π-π+π-]Dh±

    Get PDF
    The first study of CP violation in the decay mode B±→[K+K-π+π-]Dh± , with h= K, π , is presented, exploiting a data sample of proton–proton collisions collected by the LHCb experiment that corresponds to an integrated luminosity of 9 \,fb - 1 . The analysis is performed in bins of phase space, which are optimised for sensitivity to local CP asymmetries. CP -violating observables that are sensitive to the angle γ of the Unitarity Triangle are determined. The analysis requires external information on charm-decay parameters, which are currently taken from an amplitude analysis of LHCb data, but can be updated in the future when direct measurements become available. Measurements are also performed of phase-space integrated observables for B±→[K+K-π+π-]Dh± and B±→[π+π-π+π-]Dh± decays

    A measurement of ΔΓs\Delta \Gamma_{s}

    Full text link
    Using a dataset corresponding to 9 fb19~\mathrm{fb}^{-1} of integrated luminosity collected with the LHCb detector between 2011 and 2018 in proton-proton collisions, the decay-time distributions of the decay modes Bs0J/ψηB_s^0 \rightarrow J/\psi \eta' and Bs0J/ψπ+πB_s^0 \rightarrow J/\psi \pi^{+} \pi^{-} are studied. The decay-width difference between the light and heavy mass eigenstates of the Bs0B_s^0 meson is measured to be ΔΓs=0.087±0.012±0.009ps1\Delta \Gamma_s = 0.087 \pm 0.012 \pm 0.009 \, \mathrm{ps}^{-1}, where the first uncertainty is statistical and the second systematic.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-025.htm

    Search for the rare decay of charmed baryon Λc+ into the pμ+μ- final state

    Get PDF
    A search for the nonresonant Λc+→pμ+μ- decay is performed using proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the LHCb experiment, corresponding to an integrated luminosity of 5.4 fb-1. No evidence for the decay is found in the dimuon invariant-mass regions where the expected contributions of resonances is subdominant. The upper limit on the branching fraction of the Λc+→pμ+μ- decay is determined to be 2.9(3.2)×10-8 at 90%(95%) confidence level. The branching fractions in the dimuon invariant-mass regions dominated by the η, ρ and ω resonances are also determined

    Measurements of the branching fraction ratio B(ϕμ+μ)/B(ϕe+e)\cal{B}(\phi \to \mu^+\mu^-)/\cal{B}(\phi \to e^+e^-) with charm meson decays

    Full text link
    Measurements of the branching fraction ratio B(ϕμ+μ)/B(ϕe+e){\cal{B}(\phi \to \mu^+ \mu^-)/\cal{B}(\phi\to e^+e^-)} with Ds+π+ϕ{D_{s}^{+} \to \pi^{+} \phi} and D+π+ϕ{D^{+} \to \pi^{+} \phi} decays, denoted RϕπsR^{s}_{\phi \pi} and RϕπdR^{d}_{\phi \pi}, are presented. The analysis is performed using a dataset corresponding to an integrated luminosity of 5.4fb1\,\rm{fb}^{-1} of pppp collision data collected with the LHCb experiment. The branching fractions are normalised with respect to the B+K+J/ψ(e+e){B^{+} \to K^{+} J/\psi(\to e^+e^-)} and B+K+J/ψ(μ+μ){B^{+} \to K^{+} J/\psi(\to \mu^+\mu^-)} decay modes. The combination of the results yields Rϕπ=1.022±0.012(stat)±0.048(syst). R_{\phi \pi} = 1.022 \pm 0.012 \,({\rm stat}) \, \pm 0.048 \,({\rm syst}). The result is compatible with previous measurements of the ϕ+\phi \to \ell^{+}\ell^{-} branching fractions and predictions based on the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-038.html (LHCb public pages

    Search for CP\textit{CP} violation in the phase space of D0KS0K±πD^{0} \rightarrow K_{S}^{0} K^{\pm} \pi^{\mp} decays with the energy test

    Get PDF
    A search for CP\textit{CP} violation in D0KS0K+πD^{0} \rightarrow K_{S}^{0} K^{+} \pi^{-} and D0KS0Kπ+D^{0} \rightarrow K_{S}^{0} K^{-} \pi^{+} decays is reported. The search is performed using an unbinned model-independent method known as the energy test that probes local CP\textit{CP} violation in the phase space of the decays. The data analysed correspond to an integrated luminosity of 5.4 5.4~fb1^{-1} collected in proton-proton collisions by the LHCb experiment at a centre-of-mass energy of s=13\sqrt{s}=13~TeV, amounting to approximately 950000 and 620000 signal candidates for the D0KS0Kπ+D^{0} \rightarrow K_{S}^{0} K^{-} \pi^{+} and D0KS0K+πD^{0} \rightarrow K_{S}^{0} K^{+} \pi^{-} modes, respectively. The method is validated using D0Kπ+ππ+D^{0} \rightarrow K^{-} \pi^{+} \pi^{-} \pi^{+} and D0KS0π+πD^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-} decays, where CP\textit{CP}-violating effects are expected to be negligible, and using background-enhanced regions of the signal decays. The results are consistent with CP\textit{CP} symmetry in both the D0KS0Kπ+D^{0} \rightarrow K_{S}^{0} K^{-} \pi^{+} and the D0KS0K+πD^{0} \rightarrow K_{S}^{0} K^{+} \pi^{-} decays, with pp-values for the hypothesis of no CP\textit{CP} violation of 70% and 66%, respectively.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-019.html (LHCb public pages

    Observation of strangeness enhancement with charmed mesons in high-multiplicity pPbp\mathrm{Pb} collisions at sNN=8.16\sqrt {s_{\mathrm{NN}}}=8.16\,TeV

    Full text link
    The production of prompt Ds+D^+_{s} and D+D^+ mesons is measured by the LHCb experiment in proton-lead (pPbp\mathrm{Pb}) collisions in both the forward (1.5<y<4.01.5<y^*<4.0) and backward (5.0<y<2.5-5.0<y^*<-2.5) rapidity regions at a nucleon-nucleon center-of-mass energy of sNN=8.16\sqrt {s_{\mathrm{NN}}}=8.16\,TeV. The nuclear modification factors of both Ds+D^+_{s} and D+D^+ mesons are determined as a function of transverse momentum, pTp_{\mathrm{T}}, and rapidity. In addition, the Ds+D^+_{s} to D+D^+ cross-section ratio is measured as a function of the charged particle multiplicity in the event. An enhanced Ds+D^+_{s} to D+D^+ production in high-multiplicity events is observed for the whole measured pTp_{\mathrm{T}} range, in particular at low pTp_{\mathrm{T}} and backward rapidity, where the significance exceeds six standard deviations. This constitutes the first observation of strangeness enhancement in charm quark hadronization in high-multiplicity pPbp\mathrm{Pb} collisions. The results are also qualitatively consistent with the presence of quark coalescence as an additional charm quark hadronization mechanism in high-multiplicity proton-lead collisions.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-021.html (LHCb public pages

    Observation of the decays B(s)0Ds1(2536)K±B_{(s)}^{0}\to D_{s1}(2536)^{\mp}K^{\pm}

    Full text link
    This paper reports the observation of the decays B(s)0Ds1(2536)K±B_{(s)}^{0}\to D_{s1}(2536)^{\mp}K^{\pm} using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9fb19\,\mathrm{fb}^{-1}. The branching fractions of these decays are measured relative to the normalisation channel B0D0K+KB^{0}\to \overline{D}^{0}K^{+}K^{-}. The Ds1(2536)D_{s1}(2536)^{-} meson is reconstructed in the D(2007)0K\overline{D}^{*}(2007)^{0}K^{-} decay channel and the products of branching fractions are measured to be B(Bs0Ds1(2536)K±)×B(Ds1(2536)D(2007)0K)=(2.49±0.11±0.12±0.25±0.06)×105,\mathcal{B}(B_{s}^{0}\to D_{s1}(2536)^{\mp}K^{\pm})\times\mathcal{B}(D_{s1}(2536)^{-}\to\overline{D}^{*}(2007)^{0}K^{-})=(2.49\pm0.11\pm0.12\pm0.25\pm0.06)\times 10^{-5}, B(B0Ds1(2536)K±)×B(Ds1(2536)D(2007)0K)=(0.510±0.021±0.036±0.050)×105.\mathcal{B}(B^{0}\to D_{s1}(2536)^{\mp}K^{\pm})\times\mathcal{B}(D_{s1}(2536)^{-}\to\overline{D}^{*}(2007)^{0}K^{-}) = (0.510\pm0.021\pm0.036\pm0.050)\times 10^{-5}. The first uncertainty is statistical, the second systematic, and the third arises from the uncertainty of the branching fraction of the B0D0K+KB^{0}\to \overline{D}^{0}K^{+}K^{-} normalisation channel. The last uncertainty in the Bs0B_{s}^{0} result is due to the limited knowledge of the fragmentation fraction ratio, fs/fdf_{s}/f_{d}. The significance for the Bs0B_{s}^{0} and B0B^{0} signals is larger than 10σ10\,\sigma. The ratio of the helicity amplitudes which governs the angular distribution of the Ds1(2536)D(2007)0KD_{s1}(2536)^{-}\to\overline{D}^{*}(2007)^{0}K^{-} decay is determined from the data. The ratio of the SS- and DD-wave amplitudes is found to be 1.11±0.15±0.061.11\pm0.15\pm 0.06 and its phase 0.70±0.09±0.040.70\pm0.09\pm 0.04 rad, where the first uncertainty is statistical and the second systematic.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-014.html (LHCb public pages
    corecore