2,185 research outputs found

    Analysis of the Lepton Mixing Matrix in the Two Higgs Doublet Model

    Get PDF
    In the theoretical framework of Two Higgs Doublet Model (2HDM) plus three right-handed neutrinos we consider a universal treatment for the mass matrices, aside from that the active neutrinos acquire their small mass through the type-I seesaw mechanism. Then, as long as a matrix with four-zero texture is used to represent the right-handed neutrinos and Yukawa matrices, we obtain a unified treatment where all fermion mass matrices have four-zero texture. We obtain analytical and explicit expressions for the lepton flavour mixing matrix PMNS in terms of fermion masses and parameters associated with the 2HDM-III. Further, we compare these expressions of the PMNS matrix with the most up to date values of masses and mixing in the lepton sector, via a likelihood test. We find that the analytical expressions that we derived reproduce remarkably well the most recent experimental data of neutrino oscillations

    The Usefulness of Intraoperative Cerebral C-Arm CT Angiogram for Implantation of Intracranial Depth Electrodes in Stereotactic Electroencephalography Procedure

    Get PDF
    Background: Stereotactic electroencephalography (SEEG) is an invasive diagnostic tool for localizing the epileptic zone in patients with medically refractory focal epilepsy. Despite technical and imaging advances in guiding the electrode placement, vascular injury is still one of its most serious complications. Object: To investigate the usefulness of intraoperative cerebral C-arm CT angiogram (CCTA) in avoiding intracranial hemorrhagic complications during SEEG electrode implantation. Methods: Trajectory data from 12 patients who underwent SEEG electrode implantation were studied in detail. This included an analysis of the implantation of 146 SEEG electrodes, which were guided by intraoperative CCTA, as well as the standard planning based on preoperative contrast-enhanced MRI. In addition, a prospective analysis of SEEG hemorrhagic complications using the studied methodology was performed in a total of 87 patients receiving 1,310 electrodes. Results: There was no complication related to the CCTA itself. Intraoperative CCTA entailed modification of the original trajectory based on the preoperative MRI in 27 of 146 electrode implantations (18.5%). In 10 of them, a severe vascular complication was adverted by intraoperative CCTA. The safety of this new approach was also confirmed by the analysis of postinterventional CT, which revealed a symptomatic hematoma caused by 1 single electrode out of the 1,310 implanted. Conclusions: This study showed that intraoperative CCTA in addition to preoperative MRI is useful in guiding a safer SEEG electrode implantation. The combination of both imaging modalities essentially minimizes the risk of serious hemorrhagic complications

    A Causal Discovery Approach To Learn How Urban Form Shapes Sustainable Mobility Across Continents

    Full text link
    Global sustainability requires low-carbon urban transport systems, shaped by adequate infrastructure, deployment of low-carbon transport modes and shifts in travel behavior. To adequately implement alterations in infrastructure, it's essential to grasp the location-specific cause-and-effect mechanisms that the constructed environment has on travel. Yet, current research falls short in representing causal relationships between the 6D urban form variables and travel, generalizing across different regions, and modeling urban form effects at high spatial resolution. Here, we address all three gaps by utilizing a causal discovery and an explainable machine learning framework to detect urban form effects on intra-city travel based on high-resolution mobility data of six cities across three continents. We show that both distance to city center, demographics and density indirectly affect other urban form features. By considering the causal relationships, we find that location-specific influences align across cities, yet vary in magnitude. In addition, the spread of the city and the coverage of jobs across the city are the strongest determinants of travel-related emissions, highlighting the benefits of compact development and associated benefits. Differences in urban form effects across the cities call for a more holistic definition of 6D measures. Our work is a starting point for location-specific analysis of urban form effects on mobility behavior using causal discovery approaches, which is highly relevant for city planners and municipalities across continents.Comment: 22 pages, 13 figures, 4 table

    S_3-flavour symmetry as realized in lepton flavour violating processes

    Full text link
    A variety of lepton flavour violating effects related to the recent discovery of neutrino oscillations and mixings is here systematically discussed in terms of an S_3-flavour permutational symmetry. After a brief review of some relevant results on lepton masses and mixings, that had been derived in the framework of a Minimal S_3-Invariant Extension of the Standard Model, we derive explicit analytical expressions for the matrices of the Yukawa couplings and compute the branching ratios of some selected flavour changing neutral current (FCNC) processes, as well as, the contribution of the exchange of neutral flavour changing scalars to the anomaly of the muon's magnetic moment as functions of the masses of the charged leptons and the neutral Higgs bosons. We find that the S_3 x Z_2 flavour symmetry and the strong mass hierarchy of the charged leptons strongly suppress the FCNC processes in the leptonic sector well below the present experimental upper bounds by many orders of magnitude. The contribution of FCNC to the anomaly of the muon's magnetic moment is small but non-negligible.Comment: 23 pages, one figure. To appear in J. Phys A: Mathematical and Theoretical (SPE QTS5

    Genera of phytopathogenic fungi: GOPHY 3

    Get PDF
    This paper represents the third contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions, information about the pathology, distribution, hosts and disease symptoms for the treated genera, as well as primary and secondary DNA barcodes for the currently accepted species included in these. This third paper in the GOPHY series treats 21 genera of phytopathogenic fungi and their relatives including: Allophoma, Alternaria, Brunneosphaerella, Elsinoe, Exserohilum, Neosetophoma, Neostagonospora, Nothophoma, Parastagonospora, Phaeosphaeriopsis, Pleiocarpon, Pyrenophora, Ramichloridium, Seifertia, Seiridium, Septoriella, Setophoma, Stagonosporopsis, Stemphylium, Tubakia and Zasmidium. This study includes three new genera, 42 new species, 23 new combinations, four new names, and three typifications of older names

    Multi-module microwave assembly for fast read-out and charge noise characterization of silicon quantum dots

    Full text link
    Fast measurements of quantum devices is important in areas such as quantum sensing, quantum computing and nanodevice quality analysis. Here, we develop a superconductor-semiconductor multi-module microwave assembly to demonstrate charge state readout at the state-of-the-art. The assembly consist of a superconducting readout resonator interfaced to a silicon-on-insulator (SOI) chiplet containing quantum dots (QDs) in a high-κ\kappa nanowire transistor. The superconducting chiplet contains resonant and coupling elements as well as LCLC filters that, when interfaced with the silicon chip, result in a resonant frequency f=2.12f=2.12~GHz, a loaded quality factor Q=680Q=680, and a resonator impedance Z=470Z=470~Ω\Omega. Combined with the large gate lever arms of SOI technology, we achieve a minimum integration time for single and double QD transitions of 2.77~ns and 13.5~ns, respectively. We utilize the assembly to measure charge noise over 9 decades of frequency up to 500~kHz and find a 1/ff dependence across the whole frequency spectrum as well as a charge noise level of 4~μ\mueV/Hz\sqrt{\text{Hz}} at 1~Hz. The modular microwave circuitry presented here can be directly utilized in conjunction with other quantum device to improve the readout performance as well as enable large bandwidth noise spectroscopy, all without the complexity of superconductor-semiconductor monolithic fabrication.Comment: Main: 7 pages, 4 figures. Supplementary: 6 pages, 5 figure

    FASER: ForwArd Search ExpeRiment at the LHC

    Full text link
    FASER, the ForwArd Search ExpeRiment, is a proposed experiment dedicated to searching for light, extremely weakly-interacting particles at the LHC. Such particles may be produced in the LHC's high-energy collisions in large numbers in the far-forward region and then travel long distances through concrete and rock without interacting. They may then decay to visible particles in FASER, which is placed 480 m downstream of the ATLAS interaction point. In this work, we describe the FASER program. In its first stage, FASER is an extremely compact and inexpensive detector, sensitive to decays in a cylindrical region of radius R = 10 cm and length L = 1.5 m. FASER is planned to be constructed and installed in Long Shutdown 2 and will collect data during Run 3 of the 14 TeV LHC from 2021-23. If FASER is successful, FASER 2, a much larger successor with roughly R ~ 1 m and L ~ 5 m, could be constructed in Long Shutdown 3 and collect data during the HL-LHC era from 2026-35. FASER and FASER 2 have the potential to discover dark photons, dark Higgs bosons, heavy neutral leptons, axion-like particles, and many other long-lived particles, as well as provide new information about neutrinos, with potentially far-ranging implications for particle physics and cosmology. We describe the current status, anticipated challenges, and discovery prospects of the FASER program.Comment: 13 pages, 4 figures, submitted as Input to the European Particle Physics Strategy Update 2018-2020 and draws on FASER's Letter of Intent, Technical Proposal, and physics case documents (arXiv:1811.10243, arXiv:1812.09139, and arXiv:1811.12522

    Extracellular vesicles in hepatology: Physiological role, involvement in pathogenesis, and therapeutic opportunities.

    Get PDF
    Since the first descriptions of hepatocyte-released exosome-like vesicles in 2008, the number of publications describing Extracellular Vesicles (EVs) released by liver cells in the context of hepatic physiology and pathology has grown exponentially. This growing interest highlights both the importance that cell-to-cell communication has in the organization of multicellular organisms from a physiological point of view, as well as the opportunity that these circulating organelles offer in diagnostics and therapeutics. In the present review, we summarize systematically and comprehensively the myriad of works that appeared in the last decade and lighted the discussion about the best opportunities for using EVs in liver disease therapeutics
    corecore