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Since the first descriptions of hepatocyte-released exosome-like vesicles in 2008, the number of publications de-
scribing Extracellular Vesicles (EVs) released by liver cells in the context of hepatic physiology and pathology has
grown exponentially. This growing interest highlights both the importance that cell-to-cell communication has
in the organization of multicellular organisms from a physiological point of view, as well as the opportunity
that these circulating organelles offer in diagnostics and therapeutics. In the present review, we summarize sys-
tematically and comprehensively themyriad ofworks that appeared in the last decade and lighted the discussion
about the best opportunities for using EVs in liver disease therapeutics.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The liver is the largest internal organ of the human body, and it is
both functionally and structurally complex. The different types of cells
that form this organ can be categorized into two groups. From one
side, the parenchymal cells or hepatocytes, which are in charge of the
central metabolic functions attributed to the liver; on the other hand,
the non-parenchymal cells comprise a diverse group of cells fromdiffer-
ent origins that support to the parenchyma in different ways. They in-
clude liver sinusoidal endothelial cells (LSECs), cholangiocytes, hepatic
stellate cells (HSCs), and liver-specific macrophages, known as Kupffer
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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cells. Hepatocytes occupy as much as 80% of the total liver volume,
while non-parenchymal cells, in turn, represent 6.5% of the liver vol-
ume. However, this finally corresponds to 40% of whole liver cells, mak-
ing evident their importance in liver homeostasis. In fact, these cells are
responsible for maintaining the physiological conditions in the hepatic
microenvironment by secreting factors that influence and regulate
other hepatic and immune-related cells (Blouin, Bolender, & Weibel,
1977). In such complex organ, cell-to-cell communication has been
proved to be critical in both physiological and pathological events, and
the cell cross-talking network system is responsible for maintaining
the organ “machinery” working together (Marrone, Shah, & Gracia-
Sancho, 2016).

In addition to the well-known communication system based on sol-
uble factors secreted to the extracellularmilieu, the signaling carried by
different types of extracellular vesicles (EVs) is involved in cell-to-cell
signaling (Fig. 1). EVs are cell-derived membrane structures that allow
the packaging of a wide variety of molecules for their transportation
to targeted cells (Vallabhaneni et al., 2015). The cargo content of these
vesicles determines their function. It depends on the cell type of origin
aswell as its biological status, although it is also influenced by factors in-
volving the secretory cells.

1.1. Hepatocytes

Hepatocytes are the parenchymal cells of the liver, comprise most of
the organ volume, and organize in concrete structures known as hepatic
lobules, with fixed distribution respect to arterial, venous and biliary
vessels (Blouin et al., 1977). As many differentiated epithelial cells, he-
patocytes are polarized cells implicating the formation of specific
Fig. 1. Liver architecture and EVs interacti
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membrane domains and individual cytoskeletal and endoplasmic retic-
ulum networks (Decaens, Durand, Grosse, & Cassio, 2008). Hepatocytes
are involved in the synthesis of proteins, cholesterol, bile, phospho-
lipids, and glycoproteins. Besides, they play a crucial role in detoxifica-
tion processes and in the storage and mobilization of energy through
glucose and lipid metabolism. Interestingly, hepatocytes have distinct
differential metabolic gene expression and functionality along the he-
patic lobules that acquire a zonal specialization (Trefts, Gannon, &
Wasserman, 2017; van Liempd, Cabrera, Mato, & Falcon-Perez, 2013).

Due to the complexity of the organ, and the degree of specialization
of hepatocytes, it is not surprising that finding appropriate cellular
models for in vitro studies is extremely difficult. Nowadays, there are
three strategies available; the use of primary cultures, the use of cell
lines, and the generation of differentiated hepatocytes from pluripotent
cells. In the case of primary culture, not only exist an explicit limitation
to obtain human hepatocytes, but also freshly isolated hepatocytes from
adult livers rapidly lose their function in culture (Miyajima, Tanaka, &
Itoh, 2014) although, significant improvements have been made re-
cently through 3D cell culture models (Hu et al., 2018; Huch et al.,
2013; Ortega-Ribera et al., 2018). In the case of cell differentiation,
two major schemes have been described; from one side obtain hepato-
cytes by inducing differentiation of stem cells, either from the hepatic or
not hepatic origin, and from another side the use of pluripotent cells, ei-
ther embryonic or chemically induced (Zeilinger, Freyer, Damm,
Seehofer, & Knospel, 2016).

Given the difficulty of producing a large amount of EVs from a lim-
ited number of cells, it is not surprising that the use of established cell
lines is an essential alternative for characterization studies. Tumoral
cell lines such as Huh7 or HepG2 were isolated from tumors. They
ons between different liver cell types.
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maintain few features of themature hepatocytes, such as the capacity of
being infected by hepatitis virus C in the case of Huh7 (Lohmann et al.,
1999) or the secretion of some plasmatic proteins (Sormunen,
Eskelinen, & Lehto, 1993). The use of hepatic progenitor cell lines,
such as MLP29, has showed important differences between their EVs
and those ones released by mature primary hepatocytes (Royo et al.,
2013; Royo et al., 2019). As a consequence, most characterization stud-
ies relay on EVs obtained from primary culture (Conde-Vancells et al.,
2008; Herrera et al., 2010; Jiang et al., 2020; Zhang et al., 2019). An in-
teresting alternative is the use of the HepaRG cell line, a cell line from
human origin that behaves almost as a fully-functional human hepato-
cyte (Gripon et al., 2002), and for that reason it has been amodel for ex-
tracellular studies related to drug induce liver damage (DILI) (Duan
et al., 2019; Mosedale et al., 2018).

Taking advantage of those cellular models, the study of hepatocyte-
derived EVs have evolved and becoming an important part of the
hepatology field. In 2008, our group made the characterization of
hepatocyte-derived exosomes-like vesicles, and also described their
proteome that not only contain proteins previously associatedwith ves-
icles, but also proteins specifics from hepatocyte machinery, reassuring
the hypothesis that EVs content reflect the characteristics of the paren-
tal cell (Conde-Vancells et al., 2008). Someyears later, we also described
the transcriptome of hepatocyte-derived EVs (Royo et al., 2013), ob-
serving specific mRNA from liver, which is in agreement with the ob-
served in other cells, like cardiomyocyte-derived EVs, that contained
transcripts that encode proteins involved in mitochondrial energy gen-
eration (Waldenstrom, Genneback, Hellman, & Ronquist, 2012).

The cargo of EVs also includes signaling activators. In 2016, Nojima
et al. studied the role of exosomes in liver physiology and they showed
that after ischemia/reperfusion injury or partial hepatectomy, hepato-
cytes released exosomes carry the synthetic machinery to form the sig-
naling lipid sphingosine-1-phosphate (S1P) in target hepatocytes
(Nojima et al., 2016). Specifically, exosomes delivered sphingosine ki-
nase 2 (SK2) promoting hepatocytes survival, growth and migration.
In addition, S1P alone could promote hepatocyte proliferation in
culture.

It has been demonstrated thatmicrovesicles (MVs) have the capabil-
ity of targeting other cells and transferring repair toolkits (Tetta, Bruno,
Fonsato, Deregibus, & Camussi, 2011). EVs activated the proliferation of
remnant hepatocytes after hepatectomy transferring specific mRNA
subsets through MVs derived from human liver stem cells (Herrera
et al., 2010). Currently, the knowledge of the cargo of EVs and the way
that this cargo can act in the receptor cells support the creation of a
cell bank establishment for allogenic transplantation, knowing that
the fetal liver mesenchymal stem cells and their secreted factors could
be an alternative to hepatocyte transplantation in liver cell-based ther-
apies (Chinnici et al., 2019).

Apart from proteins and RNA, EVs could also carry active enzymes,
which can induce changes in the extracellular environment and in the
recipient cells. Enzymes carried by hepatocyte-released EVs are meta-
bolically active and can affect the number of serum metabolites in-
volved in oxidative stress metabolism and the endothelial functions
(Royo et al., 2017). Over the last few years many enzymes have been
identified as biomarkers of different liver diseases (reviewed in
(Azparren-Angulo, Royo, & Falcón-Pérez, 2019)). A clear example is
the presence of blood-circulating EVs carrying active cytochromes
after liver injury, a phenomenon that could be relevant in extracellular
metabolism of drugs (Palomo et al., 2018). Other enzyme described in
EVs is ApoE (Conde-Vancells et al., 2008), an apolipoprotein involved
in themetabolism of atherogenic lipoproteins, that has been seen to in-
teract with selenoprotein P, also present in hepatocyte-derived EVs, to
regulate their secretion to the extracellular media, and to play a role in
the protection of neuronal cells from amyloid β (Aβ)-induced cell
death (Jin et al., 2020).

As mentioned before, EVs cargo could modify the recipient cells,
generating different responses in them. Hepatocytes-derived EVs have
3

been implicated in the proliferation of cholangiocytes through interac-
tion with primary cilia, working as signaling and influencing intracellu-
lar regulatory mechanism (Masyuk et al., 2010).

1.2. Liver sinusoidal endothelial cells

Liver sinusoidal endothelial cells (LSECs) comprise a small fraction of
the cellular component in the liver, approximately 20% of it (but 50% of
non-parenchymal fraction) (Sorensen, Simon-Santamaria, McCuskey, &
Smedsrod, 2015). Their morphology and function make them unique
and different from other endothelial cells (Aird, 2007), as they show fe-
nestrae and a lack of basement membrane. These characteristics added
to their high receptor-mediated endocytic activity compared to other
endothelial cells, facilitate their role in the elimination of macromole-
cules and aggregates from the blood and in immune responses (i.e. act-
ing as phagocytic cells) (Sorensen et al., 2015). Moreover, LSECs
maintain hepatic stellate cells in quiescent state (Deleve, Wang, &
Guo, 2008), inhibiting the intrahepatic vasoconstriction and fibrosis de-
velopment, inherent to a great number of hepatic diseases (Gracia-
Sancho, Marrone, & Fernandez-Iglesias, 2019).

Like hepatocytes, LSECs dedifferentiate in culture, maintaining only
fenestration during two days after culture (DeLeve, Wang, Hu,
McCuskey, & McCuskey, 2004) and their endocytic activity does also
quickly decline (Elvevold, Smedsrod, & Martinez, 2008). In fact, this
limits the use of primary cultures, although studies are still published
with LSECs maintained in long-term culture. However, these cells lack
most of their features and only some of them partly maintain fenestrae,
as most of the available LSEC cell lines. Only SK Hep1 cell line has
showed to uptake the LSECs specific ligand FITC-FSA in functional assays
(Cogger et al., 2008). TRP3 cell line keeps some of the LSEC origin char-
acteristics, but also show differences with primary cells, as low level of
fenestration (Parent et al., 2014). TMNK-1 is another liver endothelial
cell line available that shares most features with primary hLSECs
(Giugliano et al., 2015). In spite that they do not show fenestrae
in vitro, they can recover them when engrafted in vivo (Filali, Hiralall,
van Veen, Stolz, & Seppen, 2013). Novel methods to maintain LSECs
phenotype in vitro are being developed, and include the use of liver-
on-a-chip technology and the generation of LSECs-like cells fromplurip-
otent stem cells (Gage et al., 2020).

Because of their anatomical proximity with hepatic stellate cells
(HSC), LSEC-derived exosomes can influence them by paracrine regula-
tion. As happened with hepatocyte-derived EVs, LSEC-derived EVs also
carry active enzymes. Using the LSEC cell line TSEC (Huebert et al.,
2010),Wang and colleagues demonstrated that endothelial cells release
exosomes containing sphingosine kinase 1 (SK1), which also induces
the formation of S1P in recipient cells and thus activates quiescent
HSCs to myofibroblasts and promotes their migration (Wang et al.,
2015). Fibroblastic growth factor 2 (FGF2), which is related to both an-
giogenesis and fibrosis, enhances both SK1 mRNA and protein levels in
TSECs and in their exosomes. The uptake of TSEC-derived EVs by HSCs
recipient cells has been shown to be mediated through an exosomal
fibronectin-dependent initial interaction with cellular integrins and a
dynamin-dependent endocytosis. Once in the cell, the EV cargo pro-
motes AKT activation through its phosphorylation, what lead to its sub-
sequent signaling pathways and HSC activation (R. Wang et al., 2015).
Future desirable works will hopefully validate these findings and fur-
ther expand the knowledge about primary LSECs derived EVs.

1.3. Cholangiocytes

The intrahepatic and extrahepatic bile ducts are lined by
cholangiocytes. They comprise a minority cell population in the liver
(approximately 5%) and form a complex network extending from the
Canals of Hering in the liver to the duodenum, where the bile is spilled
(Alpini, McGill, & Larusso, 2002). Like other epithelial cells, they are po-
larized leading to different plasma membrane domains and transport
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functions, many involved in bile formation. These cells are critical for
bile generation, a secretory fluid containing factors such as bile acids,
lipids, proteins, electrolytes and endobiotic and xenobiotic compounds
that aid digestion, maintain the enterohepatic circulation and help in
the elimination of compounds from the body.

Cholangiocytes acquire a greater degree of differentiation along the
biliary ducts (Han et al., 2013), being immaturewithin the Canals of He-
ring andmuchmore specialized and bigger in its final steps before arriv-
ing at the duodenum. Their morphological, biochemical and functional
heterogeneity along the bile tract makes difficult to establish cellular
models for in vitro studies. Regarding in vitromodels, two are available
nowadays, the differentiation into cholangiocytes from induced plurip-
otent stem cells (iPSCs) (Cervantes-Alvarez et al., 2017; Sampaziotis
et al., 2017), and the generation of 3D organoids (Sampaziotis et al.,
2017; Vyas et al., 2018). In this latter case, distinct differentiated
cholangiocytes can be obtained, being representative of their physiolog-
ical situation. Even though these are the mostly used models recently,
there are also some immortalized cell lines at investigators disposal, as
for example H69 (although immortalized, it is not malignant and does
not produce tumors in vivo in experiments carried out in mice) (Dutta
et al., 2015).

Cholangiocytes are normally quiescent cells in a healthy state, but
after the accumulation of bile acids in the damaged liver, they activate
the inflammatory response. In this scenario, damaged cholangiocytes
release EVs containing long non-coding RNA H19 that does disrupt
bile acid homeostasis in hepatocytes. Thus, the uptake of this lncRNA
suppresseses small heterodimer partner (SHP) expression in hepatocytes,
a nuclear receptor and transcriptional regulator involved in the regula-
tion of bile acid, glucose and lipid metabolism, as well as in suppressing
inflammation and fibrosis. The suppression of SHP expression has been
shown to be gradual during liver diseases progression. Finally, HSCs be-
come also activated because of the changes in the cargo of hepatocytes
exosomes (Li et al., 2018). Moreover, H19-containing cholangiocyte-
derived EVs can also be taken up by Kupffer cells, promoting their acti-
vation and phagocytosis activity (Li et al., 2020). H19 RNA has also been
detected in cholangiocyte-derived EVs in models of Biliary Atresia, pro-
moting autocrine proliferation by upregulating the S1P receptor 2
(S1PR2) - SK2 axis, mainly through the activation and phosphorylation
of ERK1/2 (Xiao et al., 2019).

Biliary EVs, enriched in small vesicles (exosome-like) originated in
both hepatocytes and cholangiocytes, act even on the proper
cholangiocytes. microRNA-15A, known for its implication in
cholangiocyte proliferation, is upregulated after the interaction of bili-
ary exosomes with these type of cells in a ciliary-dependent way, as a
result of a decrease of ERK1/2 phosphorylation ratio. This led to a de-
crease in cholangiocyte proliferation that does not happen after removal
of cell cilia (Masyuk et al., 2010).

In situations of wounding and reparation of injured tissue, platelet
derived growth factor (PDGF)-BB has been seen as one of the key regu-
lators. This factor induces angiogenesis and vasculogenesis through a
process where Hedgehog (Hh) family morphogens are known to be in-
volved. Some studies have evidenced that Hh ligands (e.g. Shh, Ihh) are
more concentrated in cholangiocyte-derived exosomes and
microvesicles after their activation with PDGF-BB, and they regulate
LSEC gene expression and activate them (Witek et al., 2009).

1.4. Hepatic stellate cells

Hepatic stellate cells (HSCs) are residentmesenchymal cells that rep-
resent one-third of non-parenchymal cells and 10–15% of total resident
cells in the liver. These cells are found in the subendothelial space of
Disse, a virtual space between the basolateral membrane of hepatocytes
and the anti-luminal side of LSECs. This space is filled with permeable
connective tissue that allows the exchange of biomolecules between he-
patocytes and portal blood flow. HSCs are normally quiescent (qHSCs),
but several stimuli can activate them. While being in a quiescent state,
4

they act as the major reservoir of retinoids (vitamin A) (Friedman,
2008) and when activated (aHSCs), cells transdifferentiation results in
proliferative, migratory and contractile myofibroblasts with profibrotic
properties [enhanced expression of alpha smooth muscle actin
(α-SMA) and fibrillar collagens. In fact, qHSCs express adipocyte
markers (PPAR-γ, SREBP-1c, and leptin), whereas aHSCs express myo-
genic markers (α-SMA, c-myb, and myocyte enhancer factor-2)
(Bataller & Brenner, 2005). The upregulation of the proteins resultants
of these genes gives place to the different properties comparing quies-
cent and activated states. Several events can activate this process
(Wallace, Friedman, & Mann, 2015), that leads to a complex dysregula-
tion of molecular pathways that perpetuates their activation, thus wors-
ening the conditions in their microenvironment.

Primary cultures from human and rodent HSCs are widely more
used to study their physiology and pathology. They can be isolated by
discontinuous gradient centrifugation and transdifferentiate into
myofibroblast spontaneously when grown on hard plastic (Fernandez-
Iglesias, Ortega-Ribera, Guixe-Muntet, & Gracia-Sancho, 2019; Higashi,
Friedman, & Hoshida, 2017). Co-culture with other hepatic cells from
HSCs microenvironment (e.g. Kupffer cells) can restore physiological
processes and dysregulation mechanisms that are lost in in vitro
mono-cultures (De Minicis et al., 2007). Apart from that, there are im-
mortalized HSC cell lines available originated from human (LX-1, LX-2
and TWNT-4) (Shibata et al., 2003; Xu et al., 2005), mouse (JS-1, GRX
and CoI-GFP) (Borojevic et al., 1985; Meurer et al., 2013) and rat
(HSC-T6 and CFSC) (Greenwel et al., 1991; Y. Kim et al., 1998). They
are mostly used for in vitro studies and therapeutic assays.

EVs-HSCs cargo highly depend on their state. For example, qHSCs re-
lease anti-fibrotic exosomes. These exosomes contain miR-214 and
miR-199a-5p in higher levels when compared to those secreted by
aHSCs. When being captured by aHSCs, it leads to suppression of con-
nective tissue growth factor (CTGF) expression and, in turn, of its down-
stream effectors α-SMA and collagens (Chen, Chen, Velazquez, &
Brigstock, 2016; Li, Chen, Kemper, & Brigstock, 2020). Exosomes con-
taining miR-214 and miR-199-5p can also be taken up by hepatocytes,
also promoting downregulation of CTFG (Handy, Castro, & Loscalzo,
2011). On the other hand, the conversion of qHSCs into aHSCs changes
the cargo and properties of HSC-derived exosomes. Activated HSCs se-
crete exosomes containing high levels of CTGF mRNA and its protein,
and these can be captured by both quiescent and activated HSCs
(Charrier et al., 2014). Hence, a positive feedback loop is caused by stim-
ulating qHSC activation and maintaining aHSCs properties.

As happens with cholangiocytes, HSCs can also be activated by
PDGF-BB, transcriptionally upregulating Shh and Ihh, increasing protein
concentration in their exosomes and microvesicles (Witek et al., 2009).
This leads to the same consequences; the activation of LSECs to promote
angiogenesis and vasculogenesis.

1.5. Kupffer cells

Kupffer cells are the resident macrophages in the liver, originated
fromperipheral circulatingmonocytes that entered the liver andmatured
into their characteristic phenotype (Dixon, Barnes, Tang, Pritchard, &
Nagy, 2013). However, they do not only originate from hematopoietic
stem cells, but also they have self-renewal capacity (Yona et al., 2013).
Their proximity to both parenchymal and non-parenchymal liver cells
leads to their multiple interactions with diverse cell types, both in health
and pathological conditions.

These cells are involved in the innate immune response, as they are
critical in the tolerance for antigens coming from the gut, maintaining
an anti-inflammatory state. They present different pattern recognition
receptors (PRRs) that recognize multiple pathogen-associated molecu-
lar patterns (PAMPs) and damage-associated molecular patterns
(DAMPs). This fact gives more evidence of their role in innate immunity
(Dixon et al., 2013). However, this signaling seems to be involved in the
progression of liver injury. In some disease situations, Kupffer cells can
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become pathologically activated, a characteristic feature of chronic in-
flammatory diseases.

As there is a lack of cell lines that can beused as amodel for the study
of Kupffer cells, several studies have been carried out by isolating pri-
mary cells, despite their number limitation. THP1 is themost commonly
used macrophage-like cell line, although it still keeps features from
monocytes and does not show the expected levels of some known
markers for Kupffer cells. A recent study developed an immortalized
KC (iKC) line through the transformation of primary Kupffer cells with
papillomavirus (HPV) E6 and E7 protein-coding genes (Faure-Dupuy
et al., 2018). This line did not show the physiological properties of
Kupffer cells, but their composition and metabolism were more similar
to them than is THP1 cell line.

Unlike the other liver cell types, Kupffer-derived EVs have not been
described yet, although it is likely that they had the ability as different
types of macrophages (Cypryk, Ohman, Eskelinen, Matikainen, &
Nyman, 2014). Indeed, there is evidence of their capacity to capture
and internalize EVs secreted from other cell types, promoting a cellular
response. This process has been described both in physiology and pa-
thology by means of which they change their gene expression pattern
to respond to microenvironmental demands (Nguyen-Lefebvre &
Horuzsko, 2015).

1.6. Differences in the EVs cargo in a functional context

Above we have introduced the characterization of EVs for each he-
patic cell type, and in the next section we would focus on the implica-
tion of EVs in different diseases. However, it is important to highlight
the fact that the EVs cargo it is determined by the parental cell, making
the messages specific for each cell type, and therefore it is possible to
distinguish the origin of each EVs.When first characterized, EVs derived
from rat hepatocytes showed the presence of numerous proteins that
has not been described before associated to vesicles, and include specific
metabolic machinery of the hepatocyte (i.e Aspgr or ApoE) and the
pathway enrichment analysis of the proteomic contents showed ox-
reductase activity and lipid metabolism as main enriched pathways
(Conde-Vancells et al., 2008). When compared with mouse liver pro-
genitor cells, it become clear that each EV had their own characteristic
cargo, since in the progenitor cell cannot be found transcripts specific
for themature hepatocyte, but coding genes related to cell cycle control
instead (Royo et al., 2013). To identify circulating EVs derived from he-
patocytes after liver damage, most common targets studied have been
specific transcripts such Alb or Cyp2d1 (Royo et al., 2013), miRNA-122
(Povero et al., 2014), the presence of cytochrome proteins such
Cyp2d1 (Palomo et al., 2018), or the activity of EV associated enzymes
such the arginase Arg1 (Royo, Moreno, et al., 2017). However, when
the presence of EVs is caused by the alteration of cholagyocytes, differ-
ent subset of markers has been demonstrated in circulating EVs. Indeed,
analysing circulating EVs with proteins derived by cholangiocarcinoma
reveal proteins with diagnostic interest such AMPN, VNN1, and PIGR
(Arbelaiz et al., 2017). Similarly, in the blood circulating EVs of primary
sclerosing cholangitis patients, it is possible to detect AMPN, FCN1, and
neprilysin (Arbelaiz et al., 2017). Therefore, it is possible to stablish the
origin of circulating EVs by their cargo in different pathologies.

Although less studied, the rest of cellular types of the liver release
EVs that contain a particular cargo associated with the functional con-
text of the parental cell. Regarding Kupffer cells, some of the observa-
tions coming from cellular models indicates that TLR3-activated
macrophages release EVs containing antiviral miRNAs (i.e.miRNA-29),
and alcohol treated monocytes release EVs loaded with miRNA-27a,
that stimulate naive monocytes to polarize into M2 macrophages
(Saha, Momen-Heravi, Kodys, & Szabo, 2016). Better characterized
through protemics analysis, LSEC derived EVs contain a proteome pro-
file associated with extracellular spaces or matrix, proteasome, colla-
gens, vesicular transport, metabolic enzymes, ribosomes and
chaperones. More interesting, the study of the cargo of activated LSEC
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vs non activated reveal that some of the processes occurring on the
cells had a reflect on EVs composition that become able to promote
fibrogenic gene expression in the HSC acceptor cells (Li, Chen, et al.,
2020). In addition, sphingosine-overexpressing endothelial cells load
EVs with this enzyme regulate HSC signaling and migration (Wang
et al., 2015). These findings advance the understanding of EC/HSC
cross-talk and identify exosomes as a potential target to attenuate
pathobiology signals. Finally, the cargo of HSC-derived contain also pro-
teins and specific proteins related to the functional role of this type of
cells. For instance, CCN2 is packaged into secreted vesicles that mediate
its intercellular transfer between HSC (Charrier et al., 2014). In parallel,
HSC derived EVs transfer miR-214 to neighbouring HSC or hepatocytes,
which inhibits CCN2 activity (Chen et al., 2014). These studies highlight
that EVs from HSC represents an important mechanism by which
fibrogenic signaling is controlled and play a role in the pathogenesis of
hepatic fibrosis. As a conclusion, the presented studies reassure the no-
tion of EVs as a specific messenger involved in the cellular crosstalk that
occurs in the liver. More comprehensive review of the cargo content for
each cell type can be found in (Zivko, Fuhrmann, & Luciani, 2020).

2. EVs as diagnostic tools in liver pathology

In the last decade, it has been observed that hepatocyte-derived EVs
play an essential role in the diagnosis of different diseases (reviewed in
(Sato,Meng, Glaser, & Alpini, 2016)). The causes of stress/damage to the
hepatocytes due to disease led to increased release of EVs contributing
to inflammation, fibrogenesis, and angiogenesis (Hernandez et al.,
2020). For that reason, it is not surprising that EVs are emerging as
key players in the pathogenesis of different liver diseases. In Table 1,
we have summarized the different molecules described as EV-cargo as-
sociated to liver diseases, mentioned along this review. In addition, we
would like to recommend to the reader other reviews more focused
onmiRNAs associated to cholagiopathies (Olaizola et al., 2018), hepato-
cellular carcinoma (Li, Yao, Xie, Liu, & Zheng, 2018) and other liver dis-
eases (Barrera-Saldana, Fernandez-Garza, & Barrera-Barrera, 2020;
Yang, Li, Zhang, & Wang, 2018), as well as related to the enzymatic ac-
tivity of liver derived EVs in the context of liver pathology (Azparren-
Angulo et al., 2019).

2.1. Drug-induced liver injury (DILI)

The liver has a central role in drugmetabolism and is a crucial organ
formost detoxification processes, being prone to xenobiotic-induced in-
jury (Sturgill & Lambert, 1997). Drug-induced liver injury (DILI) is a po-
tentially fatal adverse event with significant medical and economic
impact. DILI accounts for more than 50% of acute liver failure, being
acute hepatitis the predominant form. Liver enzymes mediate the
bioactivation of drugs to chemically reactive metabolites; these metab-
olites could cause damage that can end up in cell death and possible
liver failure (Palomo et al., 2018).

In the last years, proteomics has been used to identify a possible
source of biomarkers for different biological processes and diseases, in-
cluding hepatotoxicity (Rodriguez-Suarez et al., 2014). Furthermore, it
has been shown that thesemarkers could appear in EVs and beingmet-
abolically active to alter the extracellular environment (Royo et al.,
2017). As a result of the metabolic activity of themolecules transported
by EVs, it has also been shown that several serummetabolites involved
in oxidative stress metabolism and the endothelial function were af-
fected (Royo, Moreno, et al., 2017).

Regarding drugmetabolism, cytochromes (CYP) are vital molecules.
These enzymes metabolize the majority of xenobiotics, and in the last
years, different members of this family have been associated with hep-
atotoxicity (Gerth et al., 2019; Kumar et al., 2017). The enzymatic activ-
ity of P450 cytochrome2E1 and 2D1 (CYP2E1 and CYP2D1) is present in
circulating EVs isolated from in vivomodels of drug toxicity. Apart from
DILI, CYP2E1, this cytochrome was also detected elevated in EVs after



Table 1
Involvement of EVs in major liver pathologies.

Disease EV source Type Cargo Target (cells) Effect Reference

NAFLD/NASH Hepatocytes NON CODING
RNA

miR-192 Hepatocytes SREBP1 and stearoyl-CoA desaturase 1
overexpression

(Lin et al., 2017)

Hepatocytes miR-192 Macrophages Macrophage activation (Liu et al., 2019)
Hepatocytes Panel of miRNAs Adipocytes Adipose tissue remodeling (Mikolasevic et al., 2016; Zhao

et al., 2020)
Adipocytes GENE/PROTEIN TGF-β pathway

mediators
Hepatocytes
HSCs

TGF-β-related pathways dysregulation (Koeck et al., 2014)

Hepatocytes TRAIL Macrophages M1 polarization (Hirsova, Ibrahim, Krishnan,
et al., 2016)

Hepatocytes MLK3 Macrophages Chemotaxis (Hirsova, Ibrahim, Krishnan,
et al., 2016)

Hepatocytes VNN1 LSECs Angiogenesis (Povero et al., 2013)
ALD/ASH Hepatocytes NON CODING

RNA
miR-122 Monocytes Sensibilization to LPS-induced inflammatory

responses
(Momen-Heravi et al., 2015)

Monocytes miR-27a Naive monocytes Differentiation and M2 polarization (Saha et al., 2016)
Hepatocytes GENE/

PROTEIN
CD40L Monocytes and

macrophages
Release of pro-inflammatory cytokines (Verma et al., 2016)

Monocytes HSP90 Macrophages Activation and M1 polarization (Saha et al., 2018)
HCC HCC cells NON CODING

RNA
miRNAs HCC cells Cell growth, migration and invasion promotion (Kogure et al., 2011)

HCC cells miR-93 HCC cells Increased proliferation and invasion capacity (Xue et al., 2018)
Serum from
HCC patients

Downregulation
of miR-451a

Hepatocytes and
LSECs

Reduction of apoptosis (Zhao et al., 2019)

HCC cells miR-21 HSCs Activation and conversion into CAFs
Angiogenesis

(Zhou et al., 2018)

HCC cells miR-32-5p Chemotherapy
sensitive cell lines

Angiogenesis and EMT
Horizontal transfer of multidrug resistance

(Fu et al., 2018)

HCC cells Downregulation
of circ-0051443

HCC cells Reduction of apoptosis and cell cycle
promotion

(Chen et al., 2020)

HCC cells lncVLDR HCC cells Chemotherapy resistance (Takahashi et al., 2014)
HCC cells GENE/

PROTEIN
Angiopoietin-2 HCC cells increased angiogenesis (Xie et al., 2020)

HCC cells Downregulation
of Vps4A

HCC cells tumor suppressor function (Hirsova, Ibrahim, Krishnan,
et al., 2016; Wei et al., 2015)

HCC cells HSP60, HSP70
and HSP90

NK cells Enhanced cell cytotoxicity and granzyme B
production

(Lv et al., 2012)

HCC cells KLRK1 and HSP70 LSECs and NK
cells

Angiogenesis and improvement of NK cell
antitumor response

(Yukawa et al., 2018)

PDAC cells MIF Kupffer cells Activation of Kupffer cells and HSCs
Preparation of the pre-metastatic niche

(Costa-Silva et al., 2015)

DILI Hepatocytes NON CODING
RNA

miR-122 – Increased levels in serum in APAP-induced liver
injury model

(Bala et al., 2012)Bala et al.,
2012; (Cho, Kim, et al., 2017)

Hepatocytes miR-192 and
miR-155

– Increased levels in serum in APAP-induced liver
injury model

(Cho, Kim, et al., 2017)

Hepatocytes DNA mtDNA Neutrophils Uncontrolled APAP-induced neutrophil
infiltration, oxidative stress and hepatotoxicity

(He et al., 2017)

Fibrosis
Cirrhosis

HCV- infected
hepatocytes

NON CODING
RNA

miR-19a HSCs Fibrogenic activation (Kogure et al., 2011)

HSC GENE/
PROTEIN

Suppression of
Twist1

HSC Activation of HSC (Chen et al., 2015)

Transplantation Hepatocyte
and serum

miR-301a – High levels in EVs were associated with ACR (Nakano et al., 2017)

Serum miR-146a – High levels in EVs were associated with ACR (Hu et al., 2013)
Serum Galactin 9 – High levels in EVs were associated with ACR (Zhang, Peng, et al., 2019)
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alcohol uptake (Cho et al., 2017). In this way, CYP2E1 could be consid-
ered as a biomarker for liver injury. After galactosamine-induced liver
damage, CYP2D1 increases its activity in circulating EVs compared to
controls. Also, it was seen an increase in enzymes previously associated
with liver damage, catecholamine-methyl transferase and arginase 1
(Casal, Palomo, Cabrera, & Falcon-Perez, 2016; Palomo et al., 2018;
Rodriguez-Suarez et al., 2014; Royo, Moreno, et al., 2017).

Another molecule associated with hepatocytes' EVs as a conse-
quence of DILI is miRNAs. Acetaminophen (APAP) and carbon tetrachlo-
ride DILI showed changes in the levels of urinary miRNAs, and among
them, 10 of the increased miRNAs were in common between two inju-
ries (X. Yang et al., 2012). Liver-specific miR-122 is increased in EVs
after APAP-induced liver injury, in addition to the elevated release of
EVs in this context. Moreover, miR-192 and miR-155 are also increased
in exosomes after APAP treatment (Bala et al., 2012; Cho, Kim, Lee, &
Baek, 2017). All these findings make it easier to define potential
biomarkers to detect acute or early-stage DILI. More than single
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biomarkers, special protein cargo in EVs, and specific miRNA profiles
are being established to use them as indicators of liver injury stage
and disease prognosis.

The immune system also plays a role in the pathogenesis of DILI, as
the implication ofmiR-223 suggests. For instance, APAP-induced hepato-
toxicity leads to the release of hepatocyte-derived EVs able to upregulate
miR-223 expression in neutrophils in a TLR9-dependent mechanism.
TLR9 is activated bymitochondrial DNA (mtDNA) contained in damaged
hepatocyte-derived EVs, which activates inflammatory mediators' pro-
duction and miR-223 expression in neutrophils (He et al., 2017). The re-
moval of miR-233 results in uncontrolled APAP-induced neutrophil
infiltration, oxidative stress, and hepatotoxicity.

As we can see in this section, circulating EVs have different proper-
ties and functional roles in the development and progression of DILI. Re-
markably, the biogenesis of EVs from hepatic origin after DILI may be
influenced by phenomena of necrosis and cell death, and it has been re-
ported changes in the size of vesicles as well as in the presence of
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protein markers after drug-induced damage in primary cultures
(Palomo et al., 2018) and metabolite profile (Royo, Palomo, et al.,
2017). Other drugs, such polycyclic aromatic hydrocarbons produce
changes in cell membrane fluidity due to cholesterol depletion, increas-
ing hepatocyte EV release and cell death (van Meteren et al., 2019).
Cargo analysis of the preparationmay indicatewheather the origin is as-
sociated to exosomes, microvesicles, or apoptotic bodies (Battistelli &
Falcieri, 2020; Jeppesen et al., 2019). This also contribute to uncover
mechanistic aspects of DILI, and reinforce the interest of EVs for clinical
applications, as potential biomarkers (Barile & Vassalli, 2017; Cho, Song,
Akbar, & Baek, 2018).

2.2. NAFLD and NASH

Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic
steatohepatitis (NASH) are different stages of liver damage progression,
usually accompanied by other pathologies as obesity and diabetes.
Obesity-related hyperlipidemia can saturate the lipid storage capacity
in adipocytes, creating an ectopic lipid accumulation in the liver. This
lipid accumulation leads to a pathological condition known as NAFLD
and, particularly, its inflammatory form known as NASH (Dini et al.,
2020). NAFLD is defined by the accumulation of macrovesicular fat in
more than 5% of hepatocytes in individuals that consume less than
20 g of alcohol per day. NASH is defined as lipid accumulation with ev-
idence of cellular damage, inflammation, neovascularization, and differ-
ent degrees of scarring or fibrosis (Brunt, 2007; Clark, Brancati, & Diehl,
2002). Around 30% of the worldwide population is estimated to have a
fatty liver. Consequently, NAFLD research has been expanded to become
one of the most studied diseases together with hepatocarcinoma and
viral hepatitis (Browning et al., 2004).

In 2013, Povero et al. demonstrated that hepatocytes release EVs in
response to fat-induced liver damage (Povero et al., 2013). One year
later, the same group showed that the protein cargo from
hepatocytes-derived EVs reflected the underlying disease process. In-
deed, liver-specific microRNAs, miR-122, and miR-192 appeared
enriched in NAFLD/NASH patients' blood-derived EVs, decreasing the
expression of these microRNAs within the liver (Povero et al., 2014). In-
terestingly, miR-192 is involved inmultiple steps of NAFLD progression.
It is downregulated in lipotoxicity experimental models, thus leading to
SREBP1 and stearoyl-CoA desaturase 1 (SCD-1) overexpression in target
hepatocytes (Lin et al., 2017; X. L. Liu et al., 2019). These genes are in-
volved in de novo lipogenesis, and their upregulation accelerates
steatosis progression (Lee et al., 2017). Secondly, miR-192 is in macro-
phage activation through the rapamycin-insensitive companion of
mammalian target of rapamycin (Rictor) – Akt – forkhead box tran-
scription factor O1 (FoxO1) signaling pathway. Damaged hepatocytes
release increased levels of miR-192 in their exosomes. This miRNA in-
hibits Rictor expression, thus resulting in activation of FoxO1 activity
in macrophages, their M1 polarization, and the subsequent induction
of the inflammatory response (X. L. Liu et al., 2019). Those changes in
EVs cargo are e observed in children with NAFLD. In a study comparing
children with NAFLD and control samples, eighty-two miRNAs are dif-
ferentially expressed, among which miRNA122-5p, miRNA34a-5p,
miRNA155-5p, and miRNA146b-3p were up-regulated in NAFLD pa-
tients (X. Zhou et al., 2020). In addition to hepatocyte-to-adipocyte
EVs delivery, reverse communication has also been reported. The gene
expression of an MMP inhibitor, TIMP-1, in hepatocytes and stellate
cells is altered by the EVs released from adipose tissue in obese patients.
As a consequence of this effect, a dysregulation of the TGF-β pathway is
induced into liver cells (Koeck et al., 2014).

Also, hepatocyte-derived exosomes can send signals of metabolic
stress after lipid overload. EVs trigger adipose tissue remodeling to try
to ameliorate the metabolic distress generated by the excess of lipids
(Mikolasevic et al., 2016; Y. Zhao et al., 2020). In a study of NASH, it
was shown that lipids stimulate death receptor 5 (DR5) on hepatocytes
inducing a release of exosomes, which activate an inflammatory
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phenotype in macrophages (Hirsova et al., 2016). In line with these
pro-inflammatory effects, mixed lineage kinase 3 (MLK3) is known to
induce EV-dependent macrophage chemotaxis. In this case, MLK3 en-
hances the presence of C-X-C motif chemokine 10 (CXCL10) in
hepatocyte-EVs when treated with toxic lipids (Ibrahim et al., 2016).

Other mechanisms are related to hormones. For instance, thyroid-
stimulating hormone (TSH), a hormone that plays an essential role in
lipid metabolism, is involved in the development of NAFLD. In a study
in which HepG2 cells were treated with TSH, EVs production was in-
creased, and these EVs showed a specific altered spectrum of protein
(Ma et al., 2020). Lipid-overloaded hepatocyte-derived EVs have been
reported to influence non-parenchymal liver cells in NAFLD. In a
caspase-3 – dependent mechanism, hepatocytes release microparticles
that trigger proangiogenic responses in liver endothelial cells through
a Vanin-1 (VNN1) – dependent manner. VNN1 can promote the migra-
tion and reorganization of LSECs, a process that may be related to the
regulation of PPAR activity (Povero et al., 2013).
2.3. Alcoholic liver disease and alcoholic steatohepatitis (ALD/ASH)

Alcoholic hepatitis caused by the continuous intake of alcohol and is
defined as a syndrome of progressive inflammatory liver injury (Lucey,
Mathurin, & Morgan, 2009). The initiation of the inflammatory process
is the result of the accumulation of different factors, such as steatosis,
oxidative stress, altered gut permeability, toxic metabolites, and release
of cytokines (Fung& Pyrsopoulos, 2017). Alcoholic hepatitis is also char-
acterized by the accumulation of fat in the liver (Baraona& Lieber, 1979;
Gao & Bataller, 2011). It occurs in people that consume excessive
amounts of alcohol, as the liver is critical in ethanol metabolism, and
its chronic consumption results in a full spectrum of hepatic lesions. It
can progress from alcoholic fatty liver (AFL) to alcoholic steatohepatitis
(ASH). Thefirst case is a reversible situation if the affected person ceases
drinking alcohol, but ASH is a more severe inflammatory condition
(Mendez-Sanchez, Almeda-Valdes, & Uribe, 2005), with many of the
features that NASH presents (hepatocellular ballooning, presence of
MDBs, neutrophilic infiltration), but also shows a higher degree of
periportal inflammation. Kupffer cells have a central role in the progres-
sion of ASH, as chronic alcohol exposure can switch them from the
tolerogenic M2 phenotype to the pro-inflammatory M1 phenotype
(Osna, Donohue Jr., & Kharbanda, 2017).

As in other cases of liver damage, EVs also increase in patients with
alcoholic hepatitis or patients consuming excess ethanol (Hirsova
et al., 2016). In 2016, Verma and coworkers did a study of alcoholic
liver disease showing differences in caspase-3 and cluster of differenti-
ation 40 ligand (CD40L). They showed that the activation of caspase-3,
an enzyme involved in the generation of exosomes, increased signifi-
cantly after ethanol treatment. In the same line of research, CD40L, a
member of TNF superfamily, appeared highly packaged in exosome-
like vesicles, increasing inflammatory cytokine production in recipient
monocytes, andmacrophages. Thesemacrophages can be induced to re-
lease pro-inflammatory cytokines by either ethanol treatment or from
CD40L-containing EVs released from alcohol-injured hepatocytes. In
this situation, macrophages are induced to release TNF-α, whereas he-
patocytes (normally resistant to it) become sensitized to its action,
dying by apoptosis.

Moreover, apoptotic bodies and debris coming from apoptotic hepa-
tocytes can switchKupffer cells toM1phenotype, enhancing the inflam-
matory state and the recruitment of more immune cells (T-cells,
neutrophils) to the liver. This causes a positive feedback loop that pro-
motes parenchymal cell death and the progression of the disease
(Verma et al., 2016). Another study in the field of alcoholic liver disease
showed that the protein cargo of EVs changed between healthy and
alcohol-induced liver damage mice, finding heat shock protein 90
(Hsp90) as the originator of EV-induced activation of macrophages
(Saha et al., 2018).
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As well as proteins, miRNA cargos in EVs have been identified as a
potentially novel diagnostic tool for early alcoholic steatohepatitis, find-
ing three miRNAs (let7f, miR-29a, and miR-340) that were increased in
circulating EVs from alcoholic steatohepatitis that did not appear in EVs
from other liver injury models (Eguchi et al., 2017). Apart from those
miRNAs that are specific for alcoholic hepatitis, common miRNA for
liver damage were also detected. For instance, the presence of
miR-122 was enriched in EVs production in hepatocytes after alcohol
exposure, a typical liver miRNA that can be identified circulating after
different types of liver damage (Momen-Heravi, Bala, Kodys, & Szabo,
2015). miR-122 is released in EVs from injured hepatocytes and sensi-
tizes monocytes to LPS-induced pro-inflammatory responses, thus
explaining the exacerbated immune responses seen in this disease.
miR-27a contained in monocyte-derived EVs after alcohol exposure
does also activate other monocytes and their cytokine secretion. How-
ever, miR-27a enables naïve monocyte differentiation and polarization
into the M2 phenotype. These findings support the existence of a com-
plex feedback loop, modulating the sick liver inflammatory response
(Saha et al., 2016).

As stated above, the accumulation of fat in the liver is one of the
characteristics of alcoholic hepatitis. This accumulation is not only spe-
cific to alcoholic hepatitis, but it also occurs in nonalcoholic hepatitis.
For that reason, it is challenging to use lipids as a particular biomarker
of the underlying condition of liver damage. Despite this statement,
sphingolipids have been proposed as a marker of alcoholic hepatitis,
since the sphingolipid cargo in circulating EVs is significantly enriched
in patients with alcoholic hepatitis, showing differences when com-
pared to heavy drinkers, healthy controls, cholestatic liver diseases,
and non-alcoholic steatohepatitis patients. These results suggest that
EVs sphingolipid concentration may be employed in the diagnosis and
differentiation of alcoholic hepatitis from other liver etiologies
(Sehrawat et al., 2020).
2.4. Fibrosis and cirrhosis

Most chronic diseases progress with an accumulation of extracellu-
larmatrix proteins, including collagens (I, III and IV),fibronectin, elastin,
laminin, unduly, elastin, hyaluronan, and proteoglycans (Bataller &
Brenner, 2005). Liver fibrosis is the consequence of different diseases
such as ASH, NASH, and chronic viral hepatitis (type B or C) infection.
Initially, wound-healing after hepatocyte apoptosis and liver injury is
a physiological response, taking part in liver regeneration. However,
when the damage persists and becomes chronic, hepatocytes lose
their regeneration capacity, and large fibrous scars substitute them. De-
spite what it was thought some years ago, fibrosis is partly reversible if
the causal agent is removed (Aydin & Akcali, 2018). However, if left un-
treated, inflammation and fibrogenesis processes finally distort the he-
patic architecture, and its vascular system becomes compromised.
Cirrhosis is the situation in which nodules of regenerating hepatocytes
appear between fibrous structures. Usually, the loss of functionality is
compensated in the early stages, with part of the liver parenchyma un-
damaged and functional enough to offset thefibrotic regions. As the dis-
ease progress though, the patient could arrive at a decompensated
phase where the liver become covered by large areas of scar tissue
(Bataller & Brenner, 2005).

Twist1 is related to the fibrotic liver. It is a transcription factor in-
volved in cell fate, critical in hepatic stellate cells activation in the fi-
brotic disease. In the quiescent state, HSCs express Twist1 in high
levels, resulting in a high miR-214 expression. Twist1 and miR-214 are
packaged into exosomes and suppress CTGF translation in recipient
HSCs, maintaining them in a quiescent state (L. Chen et al., 2016). Con-
sistent with this, in a murine model of liver fibrosis, suppression of
TWIST1 expression, CTGF upregulation, HSCs activation, and pro-
fibrotic processes promotion was described (Chen, Chen, Kemper,
Charrier, & Brigstock, 2015).
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Another type of immune cells is also involved since Kupffer cells in-
duce HSCs to produce pro- or anti-inflammatory cytokines (Osna et al.,
2017). Prostaglandin D2 (secreted by Kupffer cells) can be sensed by
HSCs, promoting the production of TGF-β1 and other anti-inflammatory
cytokines in these last ones. TGF-β1 can induce the activation of
HSCs in the progression of fibrosis in different related pathologies. For
instance, TGF-β1 is upregulated after HCV infection, as miR-19a-
containing exosomes were released from infected hepatocytes and
taken up by HSCs, modulating their SOCS-STAT3-TGF-β1 axis (Devhare
et al., 2017).

2.5. Hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is the most common primary liver
malignancy in adults (Pons-Renedo & Llovet, 2003). It usually appears
as a late complication of chronic liver disease associated with cirrhosis
(Anzola, 2004). As the tumor progresses, hepatic architecture and
some of the characteristic features of the liver are altered. Typically, it
can be observed in cirrhotic tissue around the carcinoma. This sur-
rounding tissue can provide insights into the carcinogenesismechanism
and characterization of the diseases in each patient (Knudsen, Gopal, &
Singal, 2014).

Due to the impact of the disease in the society and the recent evi-
dence of the implication of EVs in the mechanism mediating paracrine
signaling between cells, there has been an increase in the number of
studies focusing on HCC-derived EVs (Pascut, Pratama, Vo, Masadah, &
Tiribelli, 2020; Wortzel, Dror, Kenific, & Lyden, 2019). Indeed, tumoral
cells are dynamic generators of EVs, perhaps because the depence of
the tumor on establish EVs as mediators in tumor-to-stroma, stroma-
to-tumor and tumor-to-tumor communication, involving different
mechanism of biogenesis (Bebelman, Smit, Pegtel, & Baglio, 2018).
There has been evidence suggesting that some miRNAs carried by EVs
are relevant players in the dynamic crosstalk among cancerous, im-
mune, and stromal cells in establishing the tumorigenic microenviron-
ment (Kogure, Lin, Yan, Braconi, & Patel, 2011; Kosaka et al., 2013).
One of the main targets regulated by those miRNAs is the transforming
growth factorβ activated kinase-1 (TAK1), appointed as a potential can-
didate for therapy. It has been shown that the expression of TAK1 could
be modulated through the miRNA cargo carried by HCC cell-derived
exosomes (Kogure et al., 2011). Also, one of the miRNAs proposed as a
novel biomarker for the diagnosis and prognosis of the disease is the
miR-93, which appears up-regulated in hepatocyte-derived circulating
EVs in patients with hepatocellular carcinoma (Xue, Wang, Zhao, Hu,
& Qin, 2018). Recently, it has been identified LPIN1 as a target of
EVs-associated miR-451a to inhibit hepatocellular tumorigenesis by
regulating tumor cell apoptosis and angiogenesis (Zhao et al., 2019).
Furthermore, it was shown that HCC cells could convert normal hepatic
stellate cells in cancer-associated fibroblasts (CAFs), promoting tumor
development by angiogenesis. HCC cells secrete exosomes containing
miRNA-21 that down-regulates its target PTEN and, as a consequence,
the PDK1/AKT signaling pathway is activated (Y. Zhou et al., 2018). In
this same line of results, experiments with multidrug-resistant HCC
cell lines revealed the presence ofmiR-32-5p inHCC-derived exosomes.
These exosomes could also activate the PI3K/Akt pathway, resulting in
angiogenesis and epithelial-mesenchymal transition (EMT). This activa-
tion has been reported to be through the samemechanismas in the case
of miR-21, the direct targeting of PTEN by the miRNA123 (Fu et al.,
2018). By contrast, LPIN1, apart from catalyzing lipid biosynthesis reac-
tions, does also act as a nuclear transcriptional coactivator for PPAR-α to
modulate lipid metabolism gene expression. Circular RNA circ-0051443
is typically carried from normal hepatocytes to HCC cells to suppress
malignancy progression. It activates cell cycle arrest and apoptosis and
has been reported to be downregulated in HCC cases (Chen et al., 2020).

In addition to their use for diagnostics, EVs may also be involved in
the mechanism of drug-resistance that tumoral cells develop against
chemotherapies. One example is the presence of linc-VLDLR, a non-
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coding RNA, enriched in cancer cells-derived EVs that generated HCC
cells chemoresistance (Takahashi, Yan, Wood, Haga, & Patel, 2014).
Moreover, EVs-mediated signaling is also involved in angiogenesis,
and HCC-derived EVs carried angiopoietin-2. When delivered into
human umbilical vein endothelium, cells increasing angiogenesis, and
the recipient cells recycle this growth factor. Therefore, angiopoietin-2
has been described as an attractive therapeutic target. Besides of that,
recipient cells recover angiopoietin-2 for it reused (Xie et al., 2020).

At the protein level, Vps4A, a regulator of exosomal biogenesis in the
endocytic pathway, appears downregulated in HCC tissues. This reduc-
tion was associated with tumor progression and metastasis, thus
granting a tumor suppressor function to Vps4A1 (Hirsova, Ibrahim,
Verma, et al., 2016; Wei et al., 2015). Additionally, HSP60, HSP70, and
HSP90 have been reported to be upregulated in HCC-derived exosomes.
Apart from the angiogenic effects of HSP70, these HSPs were able to en-
hance natural killer (NK) cell cytotoxicity and granzyme B production.
These results indicate a possibility to improve thedefectiveNKcytotoxic
activity described in HCC patients through EVs, thus improving progno-
sis perspectives. Finally, killer cell lectin-like receptor K1 (KLRK1/
NKG2D) is also present in HCC-derived EVs surface and is an activator
receptor for immune components such as NK, CD8+ and γδT cells (Lv
et al., 2012; Yukawa et al., 2018).

Furthermore, EVs released by cancer cells from non-hepatic origin
can also influence the liver microenvironment and initiate the forma-
tion of pre-metastatic niches. Pancreatic ductal adenocarcinoma
(PDAC) cells produce exosomes containing migration inhibitor factor
(MIF) that can be internalized by Kupffer cells, promoting their activa-
tion. Kupffer cell activation through MIF involves the production of
MIF-dependent cytokines (e.g., TGF-β) that activate HSCs to enhance
the metastatic niche (Costa-Silva et al., 2015). Nevertheless, it has
been appointed that a proper functional study of the role of EVs in can-
cer pathogenesis should involve the blockade of EVs biogenesis, which
is a complex issue given the different routes and mechanism involved
(Bebelman et al., 2018).

2.6. Transplantation

Hepatocyte-derived EVs represent an excellent method for diagnos-
tic in acute cellular rejection (ACR) after liver transplantation. Indeed,
levels of EVs could be used as amarker of liver rejection after liver trans-
plantation (Brodsky et al., 2008). Having high levels of EVs for two
weeks after transplant may be a signal of rejection. Also, different stud-
ies have identified novel predictors of rejection, such as galactin-9 (A. B.
Zhang, et al., 2019),miR-301a (Nakano et al., 2017) andmiR-146a (J. Hu
et al., 2013). Some years ago, it was thought that galactin nine expres-
sion was an independent factor, but it was shown that it might be a
marker of recipient cell immune status (Zhang et al., 2019). In the
case of miR-301a, it has been observed that it has an impact on proin-
flammatory cytokine production, notably in IL-6, during ACR. In a
study comparing the levels of miR-301a in naïve, tolerogenic, and lethal
ACR, it was shown that levels of miR-301a were significantly higher. By
contrast, this effect has only been seen in recipients with ACR, not in re-
cipients with abnormal liver function (Nakano et al., 2017). Finally, it
has been observed thatmiR-146a plays an essential role in the initiation
of ACR. These results have only appeared in ACR cases and not in other
liver injuries, suggesting that this elevation might not originate from
damaged hepatocytes.

3. EVs as therapeutics tools in liver pathology

3.1. Stem cell-derived EVs

Experimental cell therapy research uses mostly mesenchymal stem
cells (MSCs) for treating human diseases (Fig. 2). Despite the capabili-
ties that these cells have shown, MSCs play several simultaneous roles
that could interfere in thefinal objective of their use, such as, the release
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of cytokines to reduce inflammation, expression of growth factors to
help to heal, secreting immuno-modulatory proteins to alter host im-
mune responses, enhancing responses from endogenous repair cells,
and as mature functional cells for some tissues (Phinney & Pittenger,
2017). However, it has been observed that some of the benefits of
MSCs treatment can also be achieved with MSC-derived EVs while
avoiding many risks associated with cell transplantation (Goolaerts
et al., 2014; Lai et al., 2010; Timmers et al., 2007).

As in other areas, EVs released by MSCs have also been used to treat
liver diseases (Phinney & Pittenger, 2017; Sato et al., 2019). Different
studies comparing MSC EVs and their parent stem cells have demon-
strated that vesicles have the similar effects in liver repair and regener-
ation (Katsuda, Kosaka, Takeshita, & Ochiya, 2013; Konala et al., 2016).
Due to their cargo, those EVs improve liver function and relieve the
pathological phenotype by transferring it to damaged cells (Peterson,
Otoc, Sethi, Gupta, & Antes, 2015; Wen, Peng, Liu, Weizmann, &
Mahato, 2016). Also, it has been shown that MSC- EVs are proper treat-
ments during organ transplantation; their addition to the perfusion so-
lution ameliorates the viability and functionality of donor organs
(Grange, Bellucci, Bussolati, & Ranghino, 2020).

MSCs derived EVs had also been used in liver fibrosis since it has
been shown that human umbilical cord mesenchymal stem cells (huc-
MSCs)-derived exosomes-like EVs reduce TGF-β1 expression. TGF-β1
activated the phosphorylation of Smad2 and led to liver EMT in vivo.
Therefore, the treatment with 250μg EVs, directly injected in the left
and right lobes of the liver, inactivating the phosphorylation of Smad2
was able to reverse liver EMT in vivo (Li et al., 2013). Some years later,
the same group showed that after liver transplantation, a single dose
of huc-MSC EVs administrated through the tail vain reduces oxidative
stress and apoptotic effects, restoring liver failure. This effect could be
mediated by protein cargo GPX1 that upregulated ERK1/2 and Bcl-2
and downregulated the IKKB/NFkB/casp-9/−3 pathway (Yan et al.,
2017). Also, they compared the benefit of huc-MSC EVs vs. bifendate, a
frequently used hepatic protectant, in models of liver damage. The
study concludes that among both treatments, the intravenous adminis-
tration of huc-MSC EVs presented higher antioxidant and hepatoprotec-
tive effects than bidentate (W. Jiang et al., 2018). As a possible
explanation, huc-MSC derived EVs appear enriched in miR-455-3p,
which could play an essential role in the therapy of acute inflammatory
liver injury. miR-455-3p inhibits the activation and the cytokine pro-
duction of macrophages attenuating macrophage infiltration and local
liver damage (Shao et al., 2020). We should also mention that not
only stem cells, but also healthy cells derived EVs, obtained from pri-
mary cultures had protective effects against fibrosis (Li, Chen, Kemper,
& Brigstock, 2019).

Besides the umbilical cord, there are also studies about human bone
marrow-MSC (hBM-MSC) that show positive effects. Rong et al., have
studied the impact of hBM-MSC EVs in liver fibrosis, and demonstrated
that hBM-MSC- EVs alleviate liver fibrosis, enhancing the impact of the
parent hBM-MSC. Furthermore, they found that in hepatic stellate cells
and liver fibrosis, the expression of tissue components of the Wnt/β-
catenin pathway and collagen I were inhibited by hBN-MSC EVs (Rong
et al., 2019). In a different study, it has been shown that the administra-
tion of BM-MSC EVs reduced hepatic injury andmodulated cytokine ex-
pression. They identified as a possible effector agent the noncoding RNA
Y-RNA-1, which appears in mayor abundance in EVs than in cells of or-
igin (Haga, Yan, Takahashi, Matsuda, & Patel, 2017).

Despite the excellent results achieved with stem cells, some studies
reveal better results with a combination of therapies. In a survey about
liver fibrosis, they compare two treatments, Nilotinib, a second-
generation tyrosine kinase, versus stem cell-derived EVs. The results
showed that the combination of both treatments, consisting on daily
treatments of Nilotinib (20 mg/kg), and stem cell exosomes (0.5 ml/
rat intravenously) during the last weeks of CCl4 intoxication had a bet-
ter effect than each one alone (Shiha et al., 2020). Another example of a
combination of therapies is the use of EVs obtained from pre-treated
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huc-MSCwith TNF-α to ameliorate acute liver failure. This combination
attenuates inflammatory damage and promotes liver tissue repair by
inhibiting the activation of the NLRP3 pathway (Zhang et al., 2020).

3.2. EVs loaded with drugs

EVs are circulating entities that show particular specificity on their
biodistribution, according to their surface proteins (Hoshino et al.,
2015; Royo, Cossio, Ruiz de Angulo, Llop, & Falcon-Perez, 2019). More-
over, there is specific selectivity for the capture of EVs, and therefore,
it is possible to load EVs with chemicals, using them as a drug delivery
system (Fig. 2). In that function, EVs present some advantages, such as
improved in vivo stability, higher targeting efficiency, and targeted
therapy (Armstrong & Stevens, 2018). In the case of drug loading, the
biogenesis of EVs make endogenous loading easier, allowing to a pre-
treatment of cells with the drug of interest and subsequently re-
packaged into secreted vesicles (Alvarez-Erviti et al., 2011). The
antigen-presenting cell-derived EVs give in vivo stability for inflamma-
tory environments, protecting against the immune system, and offering
a higher circulation time (Clayton, Harris, Court, Mason, & Morgan,
2003). In addition, some cells present uptake difficulties of synthetic
systems, and for them, EVs allow higher uptake efficiency (Armstrong
& Stevens, 2018).

In chemotherapy, tumor cell-derived EVs can be used to deliver
therapeutic agents to tumor cells. Considering the advantages of this
therapy, drug-packaging EVs were used to treat murine
hepatocarcinoma and human ovarian cancer tumor cells, observing
total inhibition of tumor growth (Tang et al., 2012; Urban, Mocan,
Sanger, Lukacs-Kornek, & Kornek, 2019). In addition to drugs, EVs can
also pack and delivermiRNAs (Fig. 2). EVs loadedwith siRNAs can effec-
tively reduce the expression of genes in the liver, gut, and kidney
glomeruli (Reshke et al., 2020). For the treatment of HCC, using
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miRNA-loaded EVs has achieved inhibition of the proliferation and re-
duction of the invasion on recipient cells. Nevertheless, the transferred
RNA could generate other off-target effects (Ishiguro, Yan, Lewis-
Tuffin, & Patel, 2020; Wang, Li, Piontek, Sakaguchi, & Selaru, 2018).

The use of exosomes as drug delivery has also been applied in other
areas of liver disease, such as viral hepatitis and fulminant hepatic fail-
ure. In the case of hepatitis B, it has been shown that interferon-α
(IFN-α) pre-treated liver non-parenchymal cells release EVs with anti-
viral activity molecules, offering a new opportunity on antiviral treat-
ments (Li et al., 2013). Also, a promising strategy for the hepatitis
C virus vaccine has been developed with EVs. It has been shown that
using DNA plasmids generating recombinant retrovirus-like particles,
antigen-specific T cell responses, and antiviral immune protection are
obtained (Desjardins et al., 2009). For the treatment of fulminant liver
failure (FHF), EVs derived from shiitake fungi have been administered
intraperitoneally at a single the dose of 1 × 1010/g, 48 h before to induce
the liver damage with galactosamine. These EVs act by blocking the for-
mation of the NLRP3 inflammasome and protect from acute liver dam-
age (B. Liu et al., 2020).

Despite the advantages of EVs, such as drug delivery systems, it is
crucial to keep in mind that the production of EVs for therapy is a com-
plex process. The creation of EVs has some variables that can influence
their properties, for instance, cell type, cell collection process, expansion
methods, culture conditions, the mechanism to trigger EV release, and
EV isolation and storage methods. Variations in these parameters can
completely change the characteristics of obtained EVs, creating a very
heterogenous EVs sample (Burnouf, Agrahari, & Agrahari, 2019). There-
fore, before starting therapy using EVs as a drug delivery system, it is es-
sential to establish a very well-defined protocol for EVs production.
There is a large potential for EVs therapy in liver diseases, but there is
also big challenges to overcome. The simplest therapies, involving
local administration to the target tissue, for instance, in intranasal
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delivery to brain tissue (Zhuang et al., 2011) or direct injection into liver
(Li, Yan, et al., 2013) would be more easy to implement. On the other
hand, systemic administration presents a complex interplay of fluid dy-
namics, biological barriers and immune clearance. For EVs (nanoscale
sized and anionic), there is entrapment in the red blood cell core and
clearance by the mononuclear phagocyte system (Armstrong & Stevens,
2018). Moreover, the biochemical complexity of EVs present additional
considerations beyond liposome analogy. Blood clearance for melanoma
EVs in a murine model has been estimated in 2 min (Y. Takahashi et al.,
2013), with accumulation at 4 h of the injected EVs in the liver (28%,
spleen (1.6%), and lung (7%)(Morishita et al., 2015). However, other fac-
tors such parental cell and route of administration play also a role. It is
well known that EV-glycome modifications alter their distribution, and
for instance the introduction of glycoprotein-targeting moiety direct
them toward acetylcholine-receptor-rich organs (Wiklander et al.,
2015), or the treatment with neuraminidase increase their affinity for
the lung (Royo, Cossio, et al., 2019). In addition, the route of administra-
tion and the dose of injected EVs influenced the biodistribution pattern.

A last consideration is the challenges related to manufacture. To
comply with Good Manufacturing Practices (GMP), it is necessary to
use controllable methods for cell culture, for instance hollow fiber-
based bioreactor for cell culture is an attractive strategy for EVs produc-
tion because of the advantage of reducing the volume of conditioned
media (Chen, Lin, Chiou, & Harn, 2019), although it is important to re-
member that different culture platforms alter EV release (Palviainen
et al., 2019). Regarding purification, ultrafiltration may help to reduce
protein contamination versus ultracentrifugation, but a good set of qual-
ity control parameter, such EVmarkers, and properties derived frompa-
rental cells should be used to control batchquality and reproducibility. If
GMP compliance and a well-developed understanding of the benefit of
regulatory requirements can be applied to EV biological therapeutics
development, it will create a strong bridge between pharmaceutical
production and patients benefit (Gimona, Pachler, Laner-Plamberger,
Schallmoser, & Rohde, 2017).

3.3. Exosome-mimetic nanovesicles

As we have seen so far, EVs could be used with a therapeutic pur-
pose. One of the biggest problems with these vesicles is that most cells
do not produce a large quantity of EVs (Jang et al., 2013; Wu et al.,
2018). Also, as mentioned before, EVs production and storage have dif-
ferent variables that can change final EVs features. For that reason, a
new therapeutic technic using exosomes-mimetic nanovesicles (NVs)
has been developed (Fig. 2). Exosomes-mimetic NVs have more than a
100-fold higher yield than exosomes and are obtained through different
techniques (H. Kim et al., 2020). A popular method is to subject cells to
serial extrusion through filters with diminishing pore size. Through this
technic, high quantities of exosome-mimetic NVs are obtained, and
theseNVs have some properties similar to natural exosomes such as de-
liver information to recipient cells (Jang et al., 2013; Wu et al., 2018).
There are some exosome-mimetic NVs that are commercialized. A
study performed by Lozano-Andrés et al., it was proved that using com-
mercially available niosomes (Nio-N-GF-MAL) were able to produce
tetraspanin-domain decorated nanovesicles. These vesicles present
similar features with natural EVs and can detect using common EV
markers (Lozano-Andres et al., 2019).

Despite being a useful technique that solves some of the problems
involved in working with EVs, it still requires optimization and in vivo
tests (Ko et al., 2020). For example, exosome-mimetic NVs have been
used for research in liver disease, trying to improve liver regeneration.
It has been shown that exosome-mimetic NVs from primary hepato-
cytes increment sphingosine kinase 2 in recipient cells promoting hepa-
tocyte proliferation and liver regeneration. These results provide new
strategies for the replacement of EVs with exosome-mimetic NVs
(Wu et al., 2018). Future studies in other liver pathologies are expected.
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3.4. Adeno-associated virus and EVs

Adeno-associated virus (AAV) vectors are currently a leader for di-
rect in vivo gene therapy, given their safety and good ability to express
genes in a variety of tissues in nonhuman models and human tissues
(Coura Rdos &Nardi, 2007)(Nathwani et al., 2011). However, some lim-
itations of certain serotypes to cross physiological boundaries such the
blood brain barrier, as well as the development of neutralizing antibod-
ies by the host immune system, had become a serious challenge to the
effectivity of AAV for genetic therapy (Scallan et al., 2006). Interestingly,
a portion of AAV associates with microvesicles/EVs during production,
(Maguire et al., 2012). This association has shown a great potential of
EVs as therapeutic deliverymodalities, for instance rescuing hearing im-
pairment (Gyorgy et al., 2017), or accomplish gene expression into the
retina in a murine model (Wassmer, Carvalho, Gyorgy, Vandenberghe,
& Maguire, 2017). Indeed, it had become a promising therapeutic strat-
egy as gene vehicles supporting spread throughout the brain, reaching
regions far from the injection site. This allows to reduce the number of
injections required, and facilitates to deliver the dose rate needed to
achieve the target concentration (Orefice et al., 2019). Accordingly, the
current studies suggest that AAV associated to EVs could become a pow-
erful tool to enhance vector spreading and increase the specificity to-
ward the targeted tissue, offering the requested potential to address
significant unmet clinical challenges.

3.5. Inhibition of EVs release

Up to this point, we have described EVs as therapeutic tools, but we
have also seen along with this review that EVs may play a role in the
pathogenesis of certain diseases (Hirsova, Ibrahim, Verma, et al., 2016;
Povero et al., 2013). In consequence, it is crucial to consider the inhibi-
tion of EVs biogenesis or release as a therapeutic tool (Urban et al.,
2019) (Fig. 2). Due to the diversity of EVs population, sometimes it is
necessary to use more than one strategy for depletion (Catalano &
O'Driscoll, 2020). Different approaches could be used for the reduction
and release of EVs. On the one hand, it can be inhibited the trafficking
of EVs using compounds as calpeptin (Yano et al., 1993), manumycin
A (Datta et al., 2017), and Y27632 (Tramontano et al., 2004). Another
option would be inhibiting lipid metabolism from avoiding EVs biogen-
esis using compounds such as pantethine (Kavian et al., 2015), imipra-
mine (Deng et al., 2017) and GW4869 (Charrier et al., 2014). It is also
possible to try to avoid EV release, for instancewith the inhibitor of pro-
tein kinase C bisyndoylmaleimide (Stratton, Moore, Zheng, Lange, &
Inal, 2015), the non-competitive inhibitor of MEK 1 and MEK 2 named
U0126 (Li, Yu, Williams, & Liu, 2010), NSC23766 (Wang, Luo,
Morgelin, & Thorlacius, 2017), dimethyl amiloride (Chalmin et al.,
2010), glibenclamide (Henriksson et al., 2011) and chloramidine
(Kholia et al., 2015).

Although the inhibition of EVs release is a promising tool, it is vital to
take into account possible side-effects. The general side-effect is the de-
pletion of EVs released by healthy cells, with the disruption of several
pathways dependent on the cell to cell interaction (Catalano &
O'Driscoll, 2020). Nevertheless, we foresight a quick development of
therapeutic strategies based on EVs.
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