940 research outputs found
Statistical Properties of Fermionic Molecular Dynamics
Statistical properties of Fermionic Molecular Dynamics are studied. It is
shown that, although the centroids of the single--particle wave--packets follow
classical trajectories in the case of a harmonic oscillator potential, the
equilibrium properties of the system are the quantum mechanical ones. A system
of weakly interacting fermions as well as of distinguishable particles is found
to be ergodic and the time--averaged occupation probabilities approach the
quantum canonical ones of Fermi--Dirac and Boltzmann statistics, respectively.Comment: 16 pages, several postscript figures, uses 'epsfig.sty'. More
information is available at http://www.gsi.de/~schnack/fmd.htm
The nuclear liquid-gas phase transition within Fermionic Molecular Dynamics
The time evolution of excited nuclei, which are in equilibrium with the
surrounding vapour, is investigated. It is shown that the finite nuclear
systems undergo a first oder phase transition. The caloric curve is presented
for excited Oxygen, Magnesium, Aluminum and Calcium and the critical
temperature is estimated for Oxygen.Comment: 8 pages, 3 postscript figures, uses 'epsfig.sty'. Submitted to Phys.
Lett. B. More information available at http://www.gsi.de/~schnack/fmd.htm
Fermionic Molecular Dynamics
A quantum molecular model for fermions is investigated which works with
antisymmetrized many-body states composed of localized single-particle wave
packets. The application to the description of atomic nuclei and collisions
between them shows that the model is capable to address a rich variety of
observed phenomena. Among them are shell effects, cluster structure and
intrinsic deformation in ground states of nuclei as well as fusion, incomplete
fusion, dissipative binary collisions and multifragmentation in reactions
depending on impact parameter and beam energy. Thermodynamic properties studied
with long time simulations proof that the model obeys Fermi-Dirac statistics
and time averaging is equivalent to ensemble averaging. A first order
liquid-gas phase transition is observed at a boiling temperature of for finite nuclei of mass .Comment: 61 pages, several postscript figures, uses 'epsfig.sty'. Report to be
published in Prog. Part. Nucl. Phys. 39. More information available at
http://www.gsi.de/~schnack/fmd.htm
Molecular dynamics investigations on a quantum system in a thermostat
The model quantum system of fermions in a one dimensional harmonic oscillator
potential is investigated by a molecular dynamics method at constant
temperature. Although in quantum mechanics the equipartition theorem cannot be
used like in the Nose-Hoover-thermostat it is possible to couple an additional
degree of freedom to the system which acts as a thermometer and drives the
system towards the desired temperature via complex time steps.Comment: 11 pages, 8 postscript figures, uses 'epsfig.sty'. Submitted to
PHYSICA A. More information available at
http://obelix.physik.uni-osnabrueck.de/~schnac
Multifragmentation calculated with relativistic force
A saturating hamiltonian is presented in a relativistically covariant
formalism. The interaction is described by scalar and vector mesons, with
coupling strengths adjusted to the nuclear matter. No explicit density depe
ndence is assumed. The hamiltonian is applied in a QMD calculation to determine
the fragment distribution in O + Br collision at different energies (50 -- 200
MeV/u) to test the applicability of the model at low energies. The results are
compared with experiment and with previous non-relativistic calculations.
PACS: 25.70Mn, 25.75.+rComment: 23 pages, latex, with 10 PS figures, available at
http://www.gsi.de/~papp
The Effect of Porosity on X-ray Emission Line Profiles from Hot-Star Winds
We investigate the degree to which the nearly symmetric form of X-ray
emission lines seen in Chandra spectra of early-type supergiant stars could be
explained by a possibly porous nature of their spatially structured stellar
winds. Such porosity could effectively reduce the bound-free absorption of
X-rays emitted by embedded wind shocks, and thus allow a more similar
transmission of red- vs. blue-shifted emission from the back vs. front
hemispheres. For a medium consisting of clumps of size l and volume filling
factor f, in which the `porosity length' h=l/f increases with local radius as h
= h' r, we find that a substantial reduction in wind absorption requires a
quite large porosity scale factor h' > 1, implying large porosity lengths h >
r. The associated wind structure must thus have either a relatively large scale
l~ r, or a small volume filling factor f ~ l/r << 1, or some combination of
these. The relatively small-scale, moderate compressions generated by intrinsic
instabilities in line-driving seem unlikely to give such large porosity
lengths, leaving again the prospect of instead having to invoke a substantial
(ca. factor 5) downward revision in assumed mass-loss rates.Comment: 6 pages in apj-emulate; 3 figures; submitted to Ap
An Extensive Collection of Stellar Wind X-ray Source Region Emission Line Parameters,Temperatures, Velocities, and Their Radial Distributions as Obtained from Chandra Observations of 17 OB Stars
Chandra high energy resolution observations have now been obtained from
numerous non-peculiar O and early B stars. The observed X-ray emission line
properties differ from pre-launch predictions, and the interpretations are
still problematic. We present a straightforward analysis of a broad collection
of OB stellar line profile data to search for morphological trends. X-ray line
emission parameters and the spatial distributions of derived quantities are
examined with respect to luminosity class. The X-ray source locations and their
corresponding temperatures are extracted by using the He-like f/i line ratios
and the H-like to He-like line ratios respectively. Our luminosity class study
reveals line widths increasing with luminosity. Although the majority of the OB
emission lines are found to be symmetric, with little central line
displacement, there is evidence for small, but finite, blue-ward line-shifts
that also increase with luminosity. The spatial X-ray temperature distributions
indicate that the highest temperatures occur near the star and steadily
decrease outward. This trend is most pronounced in the OB supergiants. For the
lower density wind stars, both high and low X-ray source temperatures exist
near the star. However, we find no evidence of any high temperature X-ray
emission in the outer wind regions for any OB star. Since the temperature
distributions are counter to basic shock model predictions, we call this the
"near-star high-ion problem" for OB stars. By invoking the traditional OB
stellar mass loss rates, we find a good correlation between the fir-inferred
radii and their associated X-ray continuum optical depth unity radii. We
conclude by presenting some possible explanations to the X-ray source problems
that have been revealed by this study.Comment: Published in 2007, ApJ, 668, 456. An Erratum scheduled for
publication in 2008, ApJ, 680, is included as an Appendix. The Erratum
corrects some tabulated data in 5 tables and 2 figure
Au+Au central collisions at 150, 250 and 400 AMeV energies in QMD with relativistic forces
An extensive comparison of the recent experimental data published by the FOPI
collaboration at GSI with the results of a relativistically covariant
formulation of a QMD code is presented. For most of the quantities we find
agreement with the experimental results showing that the derived force has a
reasonable momentum dependence.Comment: 33 pages with 18 EPSF figures included. Final version to appear in
Nucl. Phys.
- …