61 research outputs found

    Size Doesn\u27t Matter: Microbial Selection Experiments Address Ecological Phenomena

    Get PDF
    Experimental evolution is relevant to ecology because it can connect physiology, and in particular metabolism, to questions in ecology. The investigation of the linkage between the environment and the evolution of metabolism is tractable because these experiments manipulate a very simple environment to produce predictable evolutionary outcomes. In doing so, microbial selection experiments can examine the causal elements of natural selection: how specific traits in varying environments will yield different fitnesses. Here, we review the methodology of microbial evolution experiments and address three issues that are relevant to ecologists: genotype-by-environment interactions, ecological diversification due to specialization, and negative frequency-dependent selection. First, we expect that genotype-by-environment interactions will be ubiquitous in biological systems. Second, while antagonistic pleiotropy is implicated in some cases of ecological specialization, other mechanisms also seem to be at work. Third, while negative frequency-dependent selection can maintain ecological diversity in laboratory systems, a mechanistic (biochemical) analysis of these systems suggests that negative frequency dependence may only apply within a narrow range of environments if resources are substitutable. Finally, we conclude that microbial experimental evolution needs to avail itself of molecular techniques that could enable a mechanistic understanding of ecological diversification in these simple systems

    A standard numbering scheme for class C β-lactamases

    Get PDF
    Unlike classes A and B, a standardized amino acid numbering scheme has not been proposed for the class C (AmpC) β-lactamases, which complicates communication in the field. Here, we propose a scheme developed through a collaborative approach that considers both sequence and structure, preserves traditional numbering of catalytically important residues (Ser64, Lys67, Tyr150, and Lys315), is adaptable to new variants or enzymes yet to be discovered, and includes a variation for genetic and epidemiological applications

    Self-recognition and Ca2+-dependent carbohydrate–carbohydrate cell adhesion provide clues to the Cambrian explosion

    Get PDF
    Author Posting. © The Authors, 2009. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Molecular Biology and Evolution 26 (2009): 2551-2561, doi:10.1093/molbev/msp170.The Cambrian explosion of life was a relatively short period ca. 540 million years ago that marked a generalized acceleration in the evolution of most animal phyla, but the trigger of this key biological event remains elusive. Sponges are the oldest extant Precambrian metazoan phylum and thus a valid model to study factors that could have unleashed the rise of multicellular animals. One such factor is the advent of self/non-self recognition systems, which would be evolutionarily beneficial to organisms to prevent germ cell parasitism or the introduction of deleterious mutations resulting from fusion with genetically different individuals. However, the molecules responsible for allorecognition probably evolved gradually before the Cambrian period, and some other (external) factor remains to be identified as the missing triggering event. Sponge cells associate through calcium-dependent, multivalent carbohydrate-carbohydrate interactions of the g200 glycan found on extracellular proteoglycans. Single molecule force spectroscopy analysis of g200-g200 binding indicates that calcium affects the lifetime (+Ca/-Ca: 680 s/3 s) and bond reaction length (+Ca/-Ca: 3.47 Å/2.27 Å). Calculation of mean g200 dissociation times in low and high calcium within the theoretical framework of a cooperative binding model indicates the non-linear and divergent characteristics leading to either disaggregated cells or stable multicellular assemblies, respectively. This fundamental phenomenon can explain a switch from weak to strong adhesion between primitive metazoan cells caused by the well documented rise in ocean calcium levels at the end of Precambrian time. We propose that stronger cell adhesion allowed the integrity of genetically uniform animals composed only of “self” cells, facilitating genetic constitutions to remain within the metazoan individual and be passed down inheritance lines. The Cambrian explosion might have been triggered by the coincidence in time of primitive animals endowed with self/non-self recognition, and of a surge in sea water calcium that increased the binding forces between their calcium-dependent cell adhesion molecules.D.A. and A.K. acknowledge financial support from the Collaborative Research Center SFB 613 from the Deutsche Forschungsgemeinschaft (DFG), and X.F.-B. acknowledges financial support from grants BIO2002-00128, BIO2005-01591, and CSD2006-00012 from the Ministerio de Ciencia y Tecnología, Spain, which included Fondo Europeo de Desarrollo Regional funds, and from grant 2005SGR-00037 from the Generalitat de Catalunya, Spain

    Molecular tracing of the emergence, adaptation, and transmission of hospital-associated methicillin-resistant Staphylococcus aureus

    Get PDF
    Hospital-associated infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are a global health burden dominated by a small number of bacterial clones. The pandemic EMRSA-16 clone (ST36-II) has been widespread in UK hospitals for 20 y, but its evolutionary origin and the molecular basis for its hospital association are unclear. We carried out a Bayesian phylogenetic reconstruction on the basis of the genome sequences of 87 S. aureus isolates including 60 EMRSA-16 and 27 additional clonal complex 30 (CC30) isolates, collected from patients in three continents over a 53-y period. The three major pandemic clones to originate from the CC30 lineage, including phage type 80/81, Southwest Pacific, and EMRSA-16, shared a most recent common ancestor that existed over 100 y ago, whereas the hospital-associated EMRSA-16 clone is estimated to have emerged about 35 y ago. Our CC30 genome-wide analysis revealed striking molecular correlates of hospital- or community-associated pandemics represented by mobile genetic elements and nonsynonymous mutations affecting antibiotic resistance and virulence. Importantly, phylogeographic analysis indicates that EMRSA-16 spread within the United Kingdom by transmission from hospitals in large population centers in London and Glasgow to regional health-care settings, implicating patient referrals as an important cause of nationwide transmission. Taken together, the high-resolution phylogenomic approach used resulted in a unique understanding of the emergence and transmission of a major MRSA clone and provided molecular correlates of its hospital adaptation. Similar approaches for hospital-associated clones of other bacterial pathogens may inform appropriate measures for controlling their intra- and interhospital spread

    Standardized metadata for human pathogen/vector genomic sequences

    Full text link
    High throughput sequencing has accelerated the determination of genome sequences for thousands of human infectious disease pathogens and dozens of their vectors. The scale and scope of these data are enabling genotype-phenotype association studies to identify genetic determinants of pathogen virulence and drug/insecticide resistance, and phylogenetic studies to track the origin and spread of disease outbreaks. To maximize the utility of genomic sequences for these purposes, it is essential that metadata about the pathogen/vector isolate characteristics be collected and made available in organized, clear, and consistent formats. Here we report the development of the GSCID/BRC Project and Sample Application Standard, developed by representatives of the Genome Sequencing Centers for Infectious Diseases (GSCIDs), the Bioinformatics Resource Centers (BRCs) for Infectious Diseases, and the U.S. National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), informed by interactions with numerous collaborating scientists. It includes mapping to terms from other data standards initiatives, including the Genomic Standards Consortium's minimal information (MIxS) and NCBI's BioSample/BioProjects checklists and the Ontology for Biomedical Investigations (OBI). The standard includes data fields about characteristics of the organism or environmental source of the specimen, spatial-temporal information about the specimen isolation event, phenotypic characteristics of the pathogen/vector isolated, and project leadership and support. By modeling metadata fields into an ontology-based semantic framework and reusing existing ontologies and minimum information checklists, the application standard can be extended to support additional project-specific data fields and integrated with other data represented with comparable standards. The use of this metadata standard by all ongoing and future GSCID sequencing projects will provide a consistent representation of these data in the BRC resources and other repositories that leverage these data, allowing investigators to identify relevant genomic sequences and perform comparative genomics analyses that are both statistically meaningful and biologically relevant

    Compensatory Evolution of Gene Regulation in Response to Stress by Escherichia coli Lacking RpoS

    Get PDF
    The RpoS sigma factor protein of Escherichia coli RNA polymerase is the master transcriptional regulator of physiological responses to a variety of stresses. This stress response comes at the expense of scavenging for scarce resources, causing a trade-off between stress tolerance and nutrient acquisition. This trade-off favors non-functional rpoS alleles in nutrient-poor environments. We used experimental evolution to explore how natural selection modifies the regulatory network of strains lacking RpoS when they evolve in an osmotically stressful environment. We found that strains lacking RpoS adapt less variably, in terms of both fitness increase and changes in patterns of transcription, than strains with functional RpoS. This phenotypic uniformity was caused by the same adaptive mutation in every independent population: the insertion of IS10 into the promoter of the otsBA operon. OtsA and OtsB are required to synthesize the osmoprotectant trehalose, and transcription of otsBA requires RpoS in the wild-type genetic background. The evolved IS10 insertion rewires expression of otsBA from RpoS-dependent to RpoS-independent, allowing for partial restoration of wild-type response to osmotic stress. Our results show that the regulatory networks of bacteria can evolve new structures in ways that are both rapid and repeatable

    A framework for human microbiome research

    Get PDF
    A variety of microbial communities and their genes (the microbiome) exist throughout the human body, with fundamental roles in human health and disease. The National Institutes of Health (NIH)-funded Human Microbiome Project Consortium has established a population-scale framework to develop metagenomic protocols, resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 or 18 body sites up to three times, which have generated 5,177 microbial taxonomic profiles from 16S ribosomal RNA genes and over 3.5 terabases of metagenomic sequence so far. In parallel, approximately 800 reference strains isolated from the human body have been sequenced. Collectively, these data represent the largest resource describing the abundance and variety of the human microbiome, while providing a framework for current and future studies

    Structure, function and diversity of the healthy human microbiome

    Get PDF
    Author Posting. © The Authors, 2012. This article is posted here by permission of Nature Publishing Group. The definitive version was published in Nature 486 (2012): 207-214, doi:10.1038/nature11234.Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.This research was supported in part by National Institutes of Health grants U54HG004969 to B.W.B.; U54HG003273 to R.A.G.; U54HG004973 to R.A.G., S.K.H. and J.F.P.; U54HG003067 to E.S.Lander; U54AI084844 to K.E.N.; N01AI30071 to R.L.Strausberg; U54HG004968 to G.M.W.; U01HG004866 to O.R.W.; U54HG003079 to R.K.W.; R01HG005969 to C.H.; R01HG004872 to R.K.; R01HG004885 to M.P.; R01HG005975 to P.D.S.; R01HG004908 to Y.Y.; R01HG004900 to M.K.Cho and P. Sankar; R01HG005171 to D.E.H.; R01HG004853 to A.L.M.; R01HG004856 to R.R.; R01HG004877 to R.R.S. and R.F.; R01HG005172 to P. Spicer.; R01HG004857 to M.P.; R01HG004906 to T.M.S.; R21HG005811 to E.A.V.; M.J.B. was supported by UH2AR057506; G.A.B. was supported by UH2AI083263 and UH3AI083263 (G.A.B., C. N. Cornelissen, L. K. Eaves and J. F. Strauss); S.M.H. was supported by UH3DK083993 (V. B. Young, E. B. Chang, F. Meyer, T. M. S., M. L. Sogin, J. M. Tiedje); K.P.R. was supported by UH2DK083990 (J. V.); J.A.S. and H.H.K. were supported by UH2AR057504 and UH3AR057504 (J.A.S.); DP2OD001500 to K.M.A.; N01HG62088 to the Coriell Institute for Medical Research; U01DE016937 to F.E.D.; S.K.H. was supported by RC1DE0202098 and R01DE021574 (S.K.H. and H. Li); J.I. was supported by R21CA139193 (J.I. and D. S. Michaud); K.P.L. was supported by P30DE020751 (D. J. Smith); Army Research Office grant W911NF-11-1-0473 to C.H.; National Science Foundation grants NSF DBI-1053486 to C.H. and NSF IIS-0812111 to M.P.; The Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231 for P.S. C.; LANL Laboratory-Directed Research and Development grant 20100034DR and the US Defense Threat Reduction Agency grants B104153I and B084531I to P.S.C.; Research Foundation - Flanders (FWO) grant to K.F. and J.Raes; R.K. is an HHMI Early Career Scientist; Gordon&BettyMoore Foundation funding and institutional funding fromthe J. David Gladstone Institutes to K.S.P.; A.M.S. was supported by fellowships provided by the Rackham Graduate School and the NIH Molecular Mechanisms in Microbial Pathogenesis Training Grant T32AI007528; a Crohn’s and Colitis Foundation of Canada Grant in Aid of Research to E.A.V.; 2010 IBM Faculty Award to K.C.W.; analysis of the HMPdata was performed using National Energy Research Scientific Computing resources, the BluBioU Computational Resource at Rice University
    corecore