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Abstract 

 

Hospital-associated infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are a 

global health burden dominated by a small number of bacterial clones. The pandemic EMRSA-16 

clone (ST36-II) has been widespread in UK hospitals for 20 years, but its evolutionary origin and 

the molecular basis for its hospital-association are unclear. We carried out a Bayesian phylogenetic 

reconstruction based on the genome sequences of 86 S. aureus isolates including 60 EMRSA-16 

and 26 additional clonal complex 30 (CC30) isolates, collected from patients in 3 continents over a 

53 year period. The 3 major pandemic clones to originate from the CC30 lineage, including phage 

type 80/81, South-West Pacific, and EMRSA-16, shared a most recent common ancestor that 

existed over 100 years ago while the hospital-associated EMRSA-16 clone is estimated to have 

emerged about 35 years ago. Our CC30 genome-wide analysis revealed striking molecular 

correlates of hospital- or community-associated pandemics represented by non-synonymous 

mutations and mobile genetic elements affecting antibiotic resistance and virulence. Importantly, 

phylogeographic analysis indicates that EMRSA-16 spread within the UK by transmission from 

large hospitals in London and Glasgow to regional health-care centers, implicating patient referrals 

as an important cause of nationwide transmission. Taken together, the high-resolution 

phylogenomic approach employed resulted in a new understanding of the emergence and 

transmission of a major MRSA clone and provided molecular correlates of its hospital adaptation. 

Similar approaches for hospital-associated clones of other bacterial pathogens may inform 

appropriate measures for controlling their intra- and inter-hospital spread. 
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Introduction 
 
Staphylococcus aureus is a component of the normal flora of about 30% of the human population, 

but is capable of causing severe infections of immuno-compromised patients in hospitals, and 

healthy humans in the community.
1
 Hospital-associated methicillin-resistant S. aureus (HA-MRSA) 

is represented by a small number of clones that rarely cause disease outside of the health-care 

setting, and which are characterized by resistance to beta-lactam antibiotics in addition to other 

front-line antimicrobials.
2
 During the last 60 years, the S. aureus clonal complex 30 (CC30) has had 

a profound impact on global human health by giving rise to 3 pandemic waves and the toxic shock 

syndrome epidemic.
3,4

 Furthermore, one studied indicated that S. aureus isolates from life-

threatening endocarditis infections are more likely to belong to CC30 than to other S. aureus 

lineages.
5
 The first CC30 pandemic was caused by the methicillin-sensitive phage type 80/81 clone 

in the 1950s and 1960s, which spread from hospitals causing a significant disease burden in the 

community and was characterized by resistance to penicillin, and production of the Panton-

Valentine leukocidin (PVL) toxin.
6–9

 The South-West Pacific clone (SWP) is a contemporary PVL-

positive community-associated MRSA clone that has spread to several continents and which largely 

causes skin and soft tissue infections of otherwise healthy individuals.
10,11

 In contrast to phage type 

80/81 and SWP, the EMRSA-16 (ST36) clone appears to be restricted to the hospital setting, and 

has reduced virulence due in part to low levels of expression of cytolytic toxins.
12

 Along with the 

EMRSA-15 (ST22) clone, EMRSA-16 has been endemic in UK hospitals for over 20 years, and has 

also been reported less commonly in other European countries, South-East Asia, South Africa, 

Australia, and North America.
3,13–17

 The high rate of MRSA infections and the rapid spread of HA-

MRSA between UK hospitals led the UK government to introduce stringent infection control 

legislation from 2003 resulting in a decrease in rates of nosocomial MRSA infection.
18,19

 Of note, 

EMRSA-16 prevalence has declined more rapidly than that of EMRSA-15, implying the existence 
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of unknown strain-dependent factors which confer increased susceptibility to hospital infection 

prevention and control measures.
18,19

  

 

Despite its clinical importance, the evolution of the EMRSA-16 clone, in addition to the molecular 

basis for its success are poorly understood. Here we employ a phylogenomic approach to examine 

the diversity of the EMRSA-16 clone relative to other CC30 pandemic clones. The results provide 

an unprecedented level of resolution into the emergence and transmission of a major clone of 

MRSA revealing molecular correlates for its hospital association. 
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Methods 

Bacterial isolates. For genome sequencing, a total of 83 S. aureus isolates were selected to 

represent the breadth of genotypic diversity within the CC30 lineage sampled through time and 

space, with an emphasis on EMRSA-16 isolates in the UK (Table S1). The majority of isolates were 

typed by multi locus sequence typing (MLST) as ST30 (n=26) or its single locus variant (slv) ST36 

(n=58), with one isolate identified as ST500, an slv of both ST30 and ST36. Genomic DNA was 

isolated from S. aureus as previously described.
36

 

 

Whole genome sequencing, mapping and alignment. Whole-genome sequencing was carried out 

with the Illumina Genome Analyzer II, or the Roche 454 GS FLX platform. Adaptor sequences 

were trimmed from Illumina reads using the ea-utils FASTQ processing tool,
20

 and low-quality 

reads were filtered out using the FASTX-toolkit.
21

 Filtered Illumina reads were mapped to the ST36 

MRSA252 genome sequence (accession number NC_002952) using the BWA short read aligner 

with the Smith-Waterman alignment of unmapped mates disabled for paired end reads.
22

 454 reads 

were trimmed using the Biopython SeqIO module and mapped to MRSA252 using the BWA long 

read aligner.
23

 Consensus sequences were called and point mutations and insertions/deletions 

(indels) identified for sites covered by at least 3 reads, with average mapping and PHRED scores 

greater than 30. Consensus genomes and whole genomes representative of the EMRSA-16 clone 

(MRSA252), SWP clone (TCH60, Acc. no. CP002110.1), and other epidemic CC30 (MN8, Acc. no. 

CM000952.1) were aligned using the progressiveMauve algorithm and gap positions removed.
24

 

 

Bayesian evolutionary analysis. Bayesian analysis of evolutionary rates and divergence times was 

performed using BEAST v1.6.1
25

 under the HKY model of nucleotide substitution. The SWP and 

Phage 80/81 clades were constrained together based on robust phylogenies determined using 

maximum-likelihood (Fig. SX), neighbour-joining and parsimony analyses. All isolates were dated 

based on year (and where known, month) of isolation. Markov Chain Monte Carlo (MCMC) 
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samples from 3 independent analyses each run for 1.5 x10
8 

iterations, sampled every 1000 

generations and the first 10% discarded as burnin, were combined for estimation of posterior 

probabilities. The relaxed lognormal molecular clock model was used, with a constant coalescent 

prior.
26

 For an alignment of the UK isolates of the EMRSA-16 clone, phylogeographic distribution 

was examined using the discrete diffusion model with distance-informed priors.
27

 Using city of 

isolation to construct the matrix of geographic locations resulted in an over-parameterized model.  

Therefore isolates were grouped by geographic region (London, South East, South and Central 

England, North, East and West Scotland), and mean distance between cities was calculated. 
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Results and Discussion 

Phylogenetic and dating analysis of CC30 pandemics. The core genome of the 86 CC30 isolates 

examined consisted of 2,381,276 bases (82% of the MRSA252 reference genome), containing a 

total of 4499 high confidence single nucleotide polymorphisms (SNP). We applied a Bayesian 

coalescent method using the relaxed lognormal molecular clock model to infer the phylogeny and 

the rate of molecular evolution of the CC30 lineage and its major clades. The phylogeny indicates 

the existence of 3 major clades within the CC30 lineage, representative of the major pandemic 

clones, 80/81, SWP and EMRSA-16, in addition to a paraphyletic clade represented by other CC30 

epidemic (OCE) isolates with strong posterior support for the majority of nodes in the tree (Fig. 1) 

Importantly, parsimony analysis indicates a very low frequency of homoplasies across the 

phylogenetic tree (Consistency Index of 0.92) implying that it is an accurate depiction of the 

evolutionary relatedness of the CC30 strains examined. The mean nucleotide substitution rate 

within CC30 was 1.42x10
-6 

substitutions per site per year (95% HPDs 1.05x10
-6

-1.78x10
-6

), and 

varied negligibly depending on the clock model, choice of tree prior and within each pandemic 

clade. Given the rate of molecular evolution determined for the CC30 lineage, we calculated the 

time of the most recent common ancestor (MRCA) for each of the three major clades that 

correspond to the 3 pandemic CC30 clones. The date for the MRCA of the 80/81 clone was 

estimated as 1937 (95% HPDs 1927-1945), the date for the MRCA of the SWP clone was estimated 

as 1968 (95% HPDs 1953-1984), and the date for the MRCA of the EMRSA-16 clone was 

estimated as 1975 (95% HPDs 1966-1983). The latter date precedes the first reports of EMRSA-16 

identification in UK hospitals by about 18 years. Finally, the date for the MRCA of the entire CC30 

lineage was estimated as 1845 (95% HPDs 1771-1908).  

 

Previously, Robinson et al. employed MLST and PCR genotyping to examine the evolution of 

CC30 pandemic clones and inferred that the SWP clone originated from the historic phage type 

80/81 clone.
3
 However, consistent with the recent findings of DeLeo et al., our phylogenetic 
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analysis clearly demonstrates the independent origins of each of the three major CC30 pandemic 

clones that are estimated to have shared a MRCA which existed at least 100 years ago. Temporal 

analysis of bacterial epidemics may implicate contemporaneous environmental factors or human 

practises that promoted their emergence and expansion. For example, the phage type 80/81 clone is 

predicted to have emerged during a time of intensive penicillin usage which may have provided a 

selection for clonal expansion after acquisition of a β-lactamase plasmid.
3,28,29

 For each of the CC30 

pandemic clones the predicted date of the MRCA is several years earlier than the time that these 

clones were first reported as clinical isolates in the literature, consistent with observations for the 

pandemic ST239 clone of S. aureus.
30–32

 Early strains of the emergent clones may have existed for 

some time prior to acquiring mutations or mobile genetic elements (MGE) associated with clonal 

expansion.  

 

Multiple independent acquisitions of pvl occurred during the evolution of CC30 pandemic 

clones. Comparative genomic analysis of closely related isolates from epidemics occupying 

different niches or associated with different disease manifestations is a powerful means for 

identifying genetic events which may have contributed to clone emergence and pathogenesis.
31,33–35

. 

PVL has been a marker for community-associated clones of S. aureus associated with skin and soft 

tissue infections or severe necrotizing pneumonia
36

, though increased identification of PVL-positive 

strains associated with nosocomial infections weakens this correlation.
37,38

 We examined the 

genomes of the CC30 isolates included in the current study for the presence of the pvl locus (lukS-

PV and lukF-PV) and found that 19 of 21 isolates belonging to the community-associated phage 

type 80/81 and SWP clones (Fig. 1). The PVL toxin is encoded by temperate phage which can be 

differentiated into distinct morphological groups, based on their elongated- or icosahedral-head 

types.
39

 Sequence analysis of the small and large terminase subunits of the PVL phage revealed that 

3 of 4 SWP clone isolates contained the elongated-head phage type, while the remaining SWP strain, 

and the phage type 80/81 clone each had the icosahedral-head phage type. Phylogenetic analysis of 
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the small and large terminase subunit genes indicates the close relatedness of the icosahedral phage 

heads of the SWP and phage type 80/81 clones (Fig S3) suggesting that a progenitor of the SWP 

and phage type 80/81 clones which existed over 100 years ago had previously acquired an 

icosahedral-head phage type encoding PVL. Subsequently, the phage was replaced by the 

elongated-head phage type in some isolates of the SWP clone (Fig. S3). Overall, these data suggest 

that PVL has a long residency with some community-associated S. aureus strains having been 

maintained in some CC30 clades since a likely acquisition event which occurred over 100 years ago. 

These data are consistent with a central role for PVL in the success of some community-associated 

S. aureus strains.
40

  

 

A single acquisition of tst led to CC30 strains responsible for the toxic shock syndrome 

epidemic.  Previous studies have demonstrated that the majority of cases of menstrual toxic shock 

syndrome (TSS) are caused by a single clone that corresponds to CC30.
41,42

 However, the 

distribution of the tst gene encoding the toxic shock syndrome toxin-1 (TSST-1) among CC30 

subclades has not been previously examined. We determined that the tst gene is harbored by the 

staphylococcal pathogenicity island 2 (SaPI2) and is present in 55 of 66 (83%) of the isolates from 

the clade represented by EMRSA-16 and the other epidemic CC30 clade (Fig. 1), but is not present 

in any of 21 (0%) of the isolates from the clades represented by the SWP and 80/81 clones. These 

data indicate the restriction of the tst gene to specific contemporary CC30 clones and its absence 

from the phage 80/81 and SWP clones. The high level of sequence identity of SaPI2 among the 55 

tst-positive isolates (3 or fewer SNPs in 14.7 kb SaPI2) strongly suggests that a single acquisition 

event occurred in an ancestor which existed at least 50 years ago, prior to the differentiation of 

EMRSA-16 from the other contemporary CC30 clones (Fig. 1) and 10 to 140 years before the TSS 

epidemic of the 1970/80s. These dating estimates are consistent with previous studies which 

provided evidence that the TSS epidemic was caused by already widely disseminated TSST-1-

positive strains rather than rapid clonal expansion of a single strain which had acquired a fitness 
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mutation (eg SaPI2 acquisition).
41

 

 

Identification of mutations which correlate with the hospital habitat of EMRSA-16. The 

hospital setting provides a unique array of insults which target bacteria including numerous classes 

of antibiotics used in treatment, and routine use of disinfectants, and detergents. However, in 

contrast to the community setting, the hospital provides a continuous supply of immuno-

compromised human hosts, which offer plentiful opportunities for infection and transmission. Our 

CC30 genome-wide analysis indicates that 58 of 60 EMRSA-16 isolates contained the SCCmecII 

element (Fig. 1). Acquisition of SCCmecII was a critical genetic event in the evolution of the 

EMRSA-16 clone as a hospital-associated antibiotic-resistant clone refractory to treatment with β-

lactam antibiotics. Of note, the type II SCCmec element has been demonstrated to reduce the 

toxicity of MRSA CC30 strains in comparison to methicillin-sensitive CC30 strains, by preventing 

normal stationary phase induction of the agr system, leading to decreased expression of cytolytic 

toxins.
43,44

 It is speculated that this reduction in energy requirement could compensate for the 

metabolically-costly maintenance of a large SCCmec element and its associated methicillin 

resistance, but which would be likely to lead to reduced fitness outside of the hospital setting.
45

 

 

In addition to SCCmecII, we identified a number of non-synonymous mutations specific to 

EMRSA-16 on loci previously demonstrated to influence antibiotic resistance, which are likely to 

have been the result of selective pressures prevalent in hospitals. Specifically, a S84L replacement 

in DNA gyrase subunit A, and an S80F replacement in DNA topoisomerase IV subunit A have been 

demonstrated to confer resistance to fluoroquinolones.
46–49

 Of note, a selection of 16 EMRSA-16 

isolates tested were all fluoroquinolone resistant (data not shown). In addition, non-synonymous 

mutations were identified in additional loci implicated in resistance including genes encoding 

penicillin binding proteins 2 and 4, the vraD component of the bacitracin resistance pathway, and 

the gene encoding for the multi-drug efflux transporter NorA in 50 of 60 EMRSA-16 isolates. 
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Finally plasmids encoding resistance to quaternary ammonium compounds were found in 7 of 60 

EMRSA-16 isolates (FigS2).
12

 

 

Recently, DeLeo and colleagues carried out a comparative genomic analysis of 9 CC30 isolates 

including a single EMRSA-16 isolate (MRSA252). The authors identified mutations in agr and hla 

genes which occurred in the ancestor of contemporary CC30 isolates which caused reduced 

virulence in mouse models of infection, leading them to infer that the mutations have contributed to 

the hospital-association of contemporary CC30 isolates.
4
 However, isolates which belong to the 

other CC30 epidemic clone, defined in the current study as a paraphyletic clade (Fig. 1), which have 

been isolated from episodes of severe community-associated infections of healthy humans including 

the TSS epidemic, also contain the same agr and hla mutations (Fig. 1 and Table S2).
50

 We 

therefore suggest that while agr and hla mutations may indeed influence the capacity of CC30 

isolates to cause certain types of infection, they are likely not sufficient to explain the hospital 

restriction of the EMRSA-16 clone since its differentiation from the other CC30 epidemic clone.  

 

We identified a number of mutations which occurred on the branch leading to the EMRSA-16 clone 

(Table SX). It should be pointed out that some of the mutations are likely to be the result of fixation 

due to genetic drift prior to clonal expansion rather than the result of selective pressures 

encountered in hospitals (Fig SX). However, several of the identified mutations are predicted to 

have functional consequences which could impact on virulence. For example, a nonsense mutation 

occurred in the squalene desaturase gene (crtM) leading to pseudogene formation and disruption of 

the terminal portion of the mevalonate pathway which leads to staphyloxanthin carotenoid 

biosynthesis.
50

 This is consistent with the non-pigmented colony phenotype of EMRSA-16 strains 

noted in the current study (data not shown), and described in the earliest reports of the EMRSA-16 

clone.
51

 Bacterial carotenoids confer resistance to oxidative killing during phagocytosis, and 

staphyloxanthin-deficient S. aureus mutants have diminished virulence in animal models of 
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infection.
50

 The loss of metabolically-expensive pigment production may in part compensate for the 

energy cost of maintaining the large SCCmecII element mediating antibiotic resistance.
31,52

 In turn, 

and in combination with the previously described hla and agr mutations, lack of pigment may affect 

its capacity to cause disease of healthy humans outside of the hospital setting.  

 

In addition non-synonymous mutations were identified in genes encoding proteins involved in 

virulence such as the virulence gene regulator CcpA, and (for a proportion of EMRSA-16 strains) 

cell wall-associated proteins SasH, IsdB, Fib, and Ebh. While the examples discussed are selected 

based on known or implicated roles in virulence, we cannot dismiss the possibility that some of the 

other non-synonymous mutations identified among EMRSA-16 strains may also have had a role in 

shaping its hospital-specialist lifestyle (Table SX). 

  

EMRSA-16 has spread within the UK by transmission from hospitals in major cities to 

regional centers. The geographic spread of hospital-associated bacterial clones is not well 

understood. Whole genome sequencing of large numbers of nosocomial isolates allows the high 

resolution tracking of the transmission of strains through space and time.
25

 Bayesian phylogenetic 

analysis of a subset of the genome sequence data which included the UK EMRSA-16 isolates only 

(58 of 60 EMRSA-16 isolates) resolved several sub-clades consisting of isolates from proximal UK 

geographic locations, consistent with the existence of EMRSA-16 strains which are endemic to 

particular hospitals or regions (Fig. 2). In particular, EMRSA-16 strains isolated in Aberdeen Royal 

Infirmary between 2006 and 2007 are more closely-related to each other (subclade A) than to other 

EMRSA-16 isolates (Fig. 2). In addition, subclade B consists largely of isolates from Central 

Scotland implying the existence of an EMRSA-16 subtype which is endemic to this region (Fig. 2). 

However, isolates from London and Glasgow are widely distributed among clusters of closely-

related isolates from regional hospitals, consistent with hospitals in major population centers acting 

as reservoir for EMRSA-16 UK transmissions. To examine this observation further we employed 
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the discrete phylogeographic diffusion model implemented in BEAST, with isolates grouped by 

geographic region (London, South East, South and Central England, North, East and West 

Scotland), and mean distance between cities calculated. An alternative approach employing a matrix 

of geographic locations based on city of isolation resulted in an over-parameterized model (Fig 2)
53

.  

Using this approach, we identified statistical support for London as a source of EMRSA-16 

transmission events to South and South-East regions of England (Bayes Factors 3.00 and 4.36 

respectively). In addition, Glasgow was identified as a reservoir for transmission of EMRSA-16 to 

surrounding population centers in the North and East of Scotland (Bayes Factors 4.04 and 7.16 

respectively). The dataset is limited by the number of hospitals sampled in different regions. For 

example, it would be interesting to examine the dynamics between regional networks within the city 

of London. Nonetheless, these data provide evidence for transmission routes from hospitals in 

major cities to UK regions leading to endemic strains circulating in local hospitals. These findings 

are consistent with a recent US study which used a simulation model to estimate high transmission 

rates between large hospitals and long term care facilities (REF).  It has previously been postulated 

that an increase in the willingness of patients to travel further for treatment, coupled with the 

centralization of specialist treatment centers have been contributing factors to the spread of MRSA 

throughout the UK.
53

 These data could inform the design of infection control protocols, such as 

decolonization of patients prior to transfer from large hospitals, in order to limit inter-hospital 

transmission as a major driving force for epidemics. 

 

Concluding comments. The capacity to rapidly sequence the genome of large numbers of bacterial 

isolates is revolutionizing the study of bacterial populations leading to unparalleled insights into 

bacterial epidemics.  By employing a high-resolution phylogenomic approach, we have provided 

broad new insights into the emergence and transmission of a major hospital-associated MRSA clone 

which may be used to inform control methods. In addition, we have identified genetic events which 

correlate with its adaptation to the hospital environment, some of which may help to explain its lack 
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of success in the community setting. The use of a similar approach for other hospital-associated 

bacteria could lead to the identification of risk factors that promote the emergence of epidemics, and 

thereby inform the rational design of methods for controlling their inter- and intra-hospital spread. 
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[Figure legends] 

Fig. 1. The CC30 lineage is divided into multiple distinct clades characterized by the presence 

of different toxin and antibiotic resistance determinants Bayesian phylogenetic reconstruction 

of the CC30 lineage using all sites in the core genome. Blue, green, red, and grey shading 

correspond to the 80/81, South-West Pacific, EMRSA-16, and other epidemic CC30 clones 

respectively.  Presence of the pvl locus is denoted by shaded black circles, tst carriage by shaded 

blue circles, intact crtM gene by shaded yellow circles, and SCCmec type is indicated for 

methicillin-resistant isolates. Branch lengths are scaled according to time-scale bar. All nodes have 

posterior probability support >80 unless labeled. 

 

Fig. 2. EMRSA-16 has been transmitted from hospitals in major population centers to 

regional centers. A. Bayesian phylogenetic reconstruction of UK EMRSA-16 isolates. Terminal 

branches representing London and Glasgow isolates are colored in red and blue, respectively. Black 

branches depict isolates from other locations. Branches are scaled with time (years). Gray shading 

indicates examples of geographically-restricted subclades a and b. B Map of UK indicating the 

sampled regions, Central England (CE), Southern England (SE) and South-East England (SEE), 

North Scotland (NS), East Scotland (ES), and West Scotland (WS), with Glasgow (G) and London 

(L) depicted in blue and red, respectively. 
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