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SIZE DOESN’T MATTER: MICROBIAL SELECTION EXPERIMENTS
ADDRESS ECOLOGICAL PHENOMENA

MICHAEL FELDGARDEN, DANIEL M. STOEBEL, DUSTIN BRISSON, AND DANIEL E. DYKHUIZEN1

Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794-5245 USA

Abstract. Experimental evolution is relevant to ecology because it can connect phys-
iology, and in particular metabolism, to questions in ecology. The investigation of the
linkage between the environment and the evolution of metabolism is tractable because these
experiments manipulate a very simple environment to produce predictable evolutionary
outcomes. In doing so, microbial selection experiments can examine the causal elements
of natural selection: how specific traits in varying environments will yield different fitnesses.
Here, we review the methodology of microbial evolution experiments and address three
issues that are relevant to ecologists: genotype-by-environment interactions, ecological
diversification due to specialization, and negative frequency-dependent selection. First, we
expect that genotype-by-environment interactions will be ubiquitous in biological systems.
Second, while antagonistic pleiotropy is implicated in some cases of ecological speciali-
zation, other mechanisms also seem to be at work. Third, while negative frequency-
dependent selection can maintain ecological diversity in laboratory systems, a mechanistic
(biochemical) analysis of these systems suggests that negative frequency dependence may
only apply within a narrow range of environments if resources are substitutable. Finally,
we conclude that microbial experimental evolution needs to avail itself of molecular tech-
niques that could enable a mechanistic understanding of ecological diversification in these
simple systems.

Key words: bacteria; ecological diversity; experimental evolution; genotype by environment;
negative frequency-dependent selection; trade-offs.

INTRODUCTION

A fundamental constraint of ecological patterns is
organismal physiology, of which cellular metabolism
is a key component. Many ecological and evolutionary
phenomena are a direct consequence of variation in
metabolism, including plant physiology, marine algal
herbivory, the distribution and population genetics of
marine invertebrates, flower phenology, the existence
of geographic clines, the evolution of pathogenesis,
local adaptation to abiotic stress, and range limits
(Koehn et al. 1976, Place and Powers 1979, Miller and
Hay 1996, Mitton 1997, Rausher et al. 1999, Day et
al. 2001, Schmidt and Rand 2001, Canterbury 2002).
Because changes in metabolism can alter the ecological
patterns of a given species, one would like to know
how the environment, a causal force of natural selec-
tion, can select changes in the metabolism of an or-
ganism. The relevance of changes in metabolism is less
clear when higher levels of biological organization
such as behavior, development, and structure, are the
primary targets of selection.

Microbial selection experiments can investigate the
linkage between the environment and the evolution of

1 Corresponding author.
E-mail: dandyk@life.bio.sunysb.edu

metabolism. In these experiments, a very simple en-
vironment can be manipulated to produce predictable
evolutionary outcomes. Unlike other systems, selection
experiments in microbes can incorporate both short-
term ecological dynamics (changes in the abundance
of genotypes) and longer-term evolutionary change (the
rise of new genotypes by mutation) due to the short
generation times and large population sizes of bacteria.
Short-term experiments can examine how environmen-
tal complexity maintains diversity; in other words,
what is the effect of defined variants in a specific en-
vironment? These experiments compete two variants
over a short enough period of time so that no new
mutations sweep through the populations (e.g., Dy-
khuizen and Davies 1980). Long-term experiments typ-
ically begin with no genetic variation; evolution comes
from selection on de novo variation (e.g., Lenski et al.
1991). In natural populations, evolutionary change can
happen on similar time scales as ecological dynamics
and affect ecological phenomena (Endler 1986, Grant
1986). To ignore this change is to assume that species
are static and do not evolve in response to the envi-
ronment (Bohannan and Lenski 2000).

Most selection experiments can be divided into two
categories: evolution-of-fitness experiments and evo-
lution-of-trait experiments. Evolution-of-fitness exper-
iments ask how fitness will change relative to an an-
cestor under a specific selective regime, without ref-
erence to traits or genetic differences (Travisano et al.
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1995a). These experiments have yielded insights into
the trajectory of fitness increases, as well as fitness
tradeoffs (Travisano et al. 1995b, Travisano and Lenski
1996). One drawback of this approach is that it is dif-
ficult to determine the role that particular environmen-
tal parameters play in selecting various genetic chang-
es, since the underlying genetic and physiological
changes are not predicted a priori.

Evolution-of-trait experiments address the causes of
natural selection: genetic variation and its relationship
to the environment. These experiments examine which
traits are selected in specific environments, and are
highly amenable to hypothesis testing. Many experi-
ments examining the evolution of traits studied selec-
tion on metabolic traits, owing to our understanding of
the genetics of metabolism and quantitative theories of
the interactions of metabolic enzymes (e.g., Dykhuizen
and Dean 1994). These experiments can either be short
term (Dykhuizen 1978, Dykhuizen and Davies 1980,
Dykhuizen and Hartl 1980, Hartl and Dykhuizen 1985)
or long term (Helling et al. 1987). Short-term evolu-
tion-of-trait experiments require assumptions about the
evolutionary process and do not necessarily test what
novel innovations might arise if the bacteria were al-
lowed to evolve in that environment. Recent techno-
logical advances such as microarrays should allow one
to determine which loci may change over time in a
particular environment (Cho and Tiedje 2002), so more
realistic experiments can be designed.

Here, we will review the methodology of evolution
experiments using bacteria, and then address three is-
sues on which a physiological approach to microbial
experimental evolution can shed light: genotype by en-
vironment interactions, the evolution of ecological spe-
cialization, and negative frequency-dependent selec-
tion.

METHODS

Batch culture

In batch culture, nongrowing cells are added to fresh
growth medium. The growth medium is a chemically
defined salt solution supplemented with a source of
carbon and energy. After an initial lag period, where
the cells are adapting physiologically to the new con-
ditions, the cells begin to grow exponentially at the
maximum growth rate until a resource becomes lim-
iting. Once resources become limited, the growth rate
slows until growth stops and the cells enter stationary
phase. The cycle is then repeated by transferring a por-
tion of the cells to fresh medium. This changing en-
vironment potentially selects for a decreased lag pe-
riod, a higher maximum growth rate, higher growth
when nutrients are limited, and survival during sta-
tionary phase; however, when the environment is re-
plenished regularly, selection for higher maximum
growth rate dominates (Vasi et al. 1994). Batch culture
experiments are seasonal and r-selected (Dykhuizen

1990). The multiple physiological states that each cell
experiences during every cycle of batch culture make
this technique undesirable for examining cellular me-
tabolism.

Chemostats

Chemostats are devices that enable microbial cul-
tures to be maintained at a predetermined growth rate
in a constant, homogeneous environment (Dykhuizen
1993). A peristaltic pump feeds fresh sterile medium
into the growth chamber. An overflow siphon removes
spent medium and cells to maintain a constant volume.
Sterile air is forced into the bottom of the culture to
maintain adequate oxygen and thorough mixing in the
growth chamber. The growth medium is a chemically
defined salt solution supplemented with a source of
carbon and energy. Concentrations of the components
of the fresh medium are such that only one is exhausted
by the growing culture. The limiting nutrient is usually
a sugar, such as glucose or lactose. When two carbon
sources are used, the complexity of the environment
has effectively increased. Resources in chemostats are
limiting and constant, mutations that increase growth
under limited resource availability are typically fa-
vored. The constancy of the resource also means that
the bacteria will not enter multiple physiological states,
which can confound an understanding of metabolic pro-
cesses. Chemostat experiments are not seasonal and are
K-selected (Dykhuizen 1990).

GENOTYPE-BY-ENVIRONMENT INTERACTIONS AND

COMMUNITY DIVERSITY

Genotype-by-environment (G 3 E) interactions have
been typically thought of in terms of complex phe-
notypic characters, such as growth rate, seed set, or
milk production. Generally, both the genetic differ-
ences, such as different breeds of animals or different
ecotypes, and the environmental differences, such as
different farms, soils, or elevations, are very complex.
In experimental evolution, we can study single genetic
changes in simple, well-defined environments, so that
the basic properties of G 3 E interactions can be un-
derstood. However, the ‘‘character’’ used in these ex-
periments is typically fitness. Unless the translation
from phenotype to fitness is a monotonic function, ex-
trapolation back to phenotype is impossible. This may
not be as much of a problem as it first seems, since in
the one case which has been examined, fitness was
linearly proportional to metabolic flux (Dykhuizen and
Dean 1990). This system involves the competition of
various alleles of the lactose operon in sugar limited
chemostats and was used by both Silva (1992) and
Dean (1995) to investigate the molecular basis of G 3
E interactions.

Dean (1995), using data from Silva (1992), compared
the fitnesses of seven different lactose operons when
grown on five different b-galactoside sugars and found
extensive G 3 E interactions. Typically, the interaction
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effect was as large or larger than the main genetic ef-
fect. To understand how this G 3 E effect arises, we
need to attend to the details of the system. The lactose
operon contains two genes important in the metabolism
of lactose and the other four b-galactosides: (1) the
lactose permease which brings the b-galactosides
across the membrane and (2) the b-galactosidase which
cleaves the b linkage to produce galactose and another
compound. If different substrates change the rates of
steps in a pathway, G 3 E interaction can be generated.
G 3 E interaction can also be generated from the
change of the kinetic properties of single enzymes.
Some G 3 E interaction was due to variation in the
lactose permease, but none in the b-galactosidase. Most
of the G 3 E interaction is caused by changes in the
distribution of the control of flow of metabolites
through the steps of the pathway; i.e., the different b-
galactosides tend to bottleneck at different steps in the
pathway. Thus, G 3 E interaction is an emergent prop-
erty of the metabolic system. G 3 E interaction could
arise either because this is simply the nature of enzymes
and pathways or because different lactose operons are
adapted to different b-galactosides. We can rule out
adaptation as, except for lactose, these b-galactosides
are creations of chemists, not seen in nature (Dean
1995). Consequently, the G 3 E interaction cannot
have evolved and must be an inherent part of this met-
abolic system. We postulate that G 3 E interactions
frequently arise as a consequence of the properties of
metabolic pathways, and that G 3 E interactions are
expected for any set of metabolic genotypes in any set
of environments. Further work needs to be done to test
this statement.

G 3 E interactions are not only created by metab-
olism: evolution can increase G 3 E interactions if
selection in one environment does not increase fitness
evenly across a range of environments. In particular,
if selection increases fitness in one environment while
leaving it unchanged or decreasing it in other environ-
ments, G 3 E interactions (and potentially speciali-
zation) can increase. Bennett and Lenski (1993) tested
this experimentally starting from a progenitor Esche-
richia coli that had been selected for 2000 generations
in batch culture at 378C. They then grew six replicate
lines in each of three thermal environments (328, 378,
and 428C) for 2000 generations. For the lines evolved
at 328C, there was a significant improvement in fitness
at 288C and 328C, but no significant improvement at
any other temperature tested. One out of the six lines
seems to have acquired a temperature sensitive muta-
tion that decreased its fitness above 408C. For the
strains evolved at 428C, there was a significant increase
in fitness at 408C and above, but no significant change
below 408C. For the strains evolved at 378C, there was
a small but significant increase in fitness at 378C, but
no change at any other temperature tested. Selection at
a particular temperature improved fitness for a small
range of temperatures around the selected temperature.

This selection did not result in fitness decreases at other
temperatures, so there are no trade-offs, yet the selec-
tion generated G 3 E interactions by restricting the
extent of the response on the temperature gradient. Ad-
aptation to a local environment can be expected to gen-
erate more G 3 E interaction than is inherent in the
physiology.

All genetic differences across all environmental dif-
ferences need not generate G 3 E interactions, as some
genotypes are well buffered to genetic and environ-
mental change. Another interesting experiment sug-
gests that well-buffered systems may be the result of
natural selection (Remold and Lenski 2001). The pro-
genitor of this experiment was isolated from a popu-
lation that had evolved for 10 000 generations in batch
culture at 378C, growing in a solution of glucose and
inorganic salts. Genes were randomly knocked out
from this founder, so that 26 different mutant strains
were created which differed from the ancestor by a
single genetic difference. The fitness of each of these
26 knockout mutations was compared to the ancestor
at 288C and 378C for growth on glucose and on maltose,
giving a total of four treatments. There is a small G 3
E effect for temperature on maltose, none on glucose,
but a major G 3 E effect for the comparison of fitness
between glucose and maltose. For all 26 knockout lines,
the fitness on glucose is not significantly different from
the ancestor at either temperature, while the fitness on
maltose is significantly different from the ancestor at
both temperatures for almost all the mutations. Four
mutations are advantageous on maltose and the rest are
detrimental. Only about a half-dozen genes are in-
volved in the uptake and cleavage of maltose to produce
two glucose molecules. While it was not checked, it is
unlikely that any, let alone most, of the 26 mutations
tested knocked out one of these half-dozen genes. Yet
these mutations affect fitness on maltose, but not on
glucose, even though maltose metabolism quickly en-
ters the same pathway as glucose metabolism. We do
not yet know why glucose metabolism is highly can-
alized, and maltose metabolism is not. This canaliza-
tion on glucose is not due to the 10 000 generations
growing on glucose, since, when the knockout muta-
tions were transferred into the strain used to start the
culture that evolved for the 10 000 generations, the re-
sulting strains still show the canalized behavior (Elena
and Lenski 2001). Presumably, the canalized behavior
evolved earlier in response to the centrality of glucose
metabolism and is not an inherent property of the met-
abolic system. If the canalized behavior is an inherent
property, it is expected that all bacterial species would
show it irrespective of how important glucose is in their
resource base.

Based on the studies reported in this section, we
propose that G 3 E interactions initially arise as a
consequence of the properties of metabolic pathways
and that selection in a particular environment will in-
crease the G 3 E effect beyond what is inherent in the
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metabolic system. Thus, G 3 E interactions are likely
for any set of metabolic genotypes in any set of en-
vironments. However, selection can also decrease G 3
E effects by selecting for canalized genotypes. Spe-
cialization and niche differentiation will be favored by
both the metabolic system which initially creates fitness
differences across environments and selection by in-
creasing fitness in favored environments. If this view
is correct, then to the degree metabolism drives eco-
logical interactions, evolutionary biologists and ecol-
ogists need to explain generalization and canalization,
rather than specialization.

THE EVOLUTION OF ECOLOGICAL SPECIALIZATION

The extensive G 3 E interactions in bacteria show
that, at least with respect to metabolism, organisms are
likely to have maximal fitness in only parts of their
niche. If, in adapting to this portion of the niche, the
species loses fitness in other portions of its niche, it
will become specialized. This pattern of a single mu-
tation increasing fitness in the current habitat while
lowering it in some other habitat, known as antagonistic
pleiotropy (Rose 1991, Holt 1996), has been suggested
as important in the specialization of many organisms
and shown to be important in some. For example, when
Hawthorne and Via (2001) examined two host races of
the pea aphid Acyrthosiphon pisum pisum, they found
several regions in the genome which both increased
fitness on the native host, and decreased fitness on the
alternate host. Antagonistic pleiotropy has also been
implicated in limiting the host range of pathogenic bac-
teria. Numerous species of bacteria can enter a path-
ogenic niche only when they lose functions that would
presumably be advantageous in other niches (Sokuren-
ko et al. 1999). While these patterns have shown that
antagonistic pleiotropy can promote specialization, it
is not the only mechanism that can do so.

As a species begins to specialize on a subset of its
niche, it may loose fitness in the unused portion of its
niche due to the fixation of mutations that are neutral
or nearly neutral in the current environment but det-
rimental in an alternate environment. The process,
known as mutation accumulation (Rose 1991, Holt
1996), can occur by genetic drift, or by hitchhiking
with an advantageous mutation (Maynard Smith and
Haigh 1974). Bacteria that are highly specialized to
their pathogenic or symbiotic lifestyles frequently have
lost many physiological abilities that would be nec-
essary to live without their host, due to a lack of ef-
fective selection to maintain those abilities (Moran and
Wernegreen 2000, Ochman and Moran 2001). Finally,
fitness increases in the current environment without a
concordant loss of fitness in other environments can
still lead to specialization (Fry 1996). Imagine that two
competing species A and B have equal fitness in en-
vironments 1 and 2. If species A increases in fitness
in environment 1, and species B does likewise in en-
vironment 2, then each species will begin to exclude

the other species from its specialized environment even
though neither has lost fitness in either environment.
Hawthorne and Via (2001) found some regions of the
pea aphid genome that enhance fitness on the preferred
host plant, but do not affect fitness on the alternate
host.

Experimental evolution studies have three distinct
advantages in examining the ecology and evolution of
specialization. First, the brief generation times, large
population sizes, ease of replication, and ability to com-
pete derived and ancestral populations enables direct
testing of patterns of fitness change associated with
specialization. Second, a detailed understanding of the
changes in characters (as opposed to fitness) which
cause specialization has been facilitated by the tre-
mendous knowledge of genetics, biochemistry, and
physiology in some bacterial species. Our understand-
ing of metabolism has been particularly useful. Finally,
microorganisms provide unparalleled opportunities to
use genetic manipulations to directly test hypotheses
about the functional basis of specialization, although
these types of experiments are still rare.

The general prevalence of specialization as a direct
consequence rather than a by-product of local adap-
tation (i.e., antagonistic pleiotropy vs. mutation accu-
mulation or adaptation to specific habitats) is still un-
clear. Selection experiments in bacteria have found that
antagonistic pleiotropy, while not universal, is clearly
at work in some case. Adams and coworkers (Helling
et al. 1987, Rosenzweig et al. 1994, Treves et al. 1998)
provide strong evidence for antagonistic pleiotropy in
specialization because they characterize the phenotypic
changes involved. They found that after over 700 gen-
erations growing in glucose-limited chemostats, a sta-
ble polymorphism developed in many of their E. coli
populations. This was surprising, as there did not ap-
pear to be multiple resources to partition in the che-
mostat in order to allow stable coexistence. Four sep-
arate clones were isolated that coexisted in this simple
environment, and three were analyzed extensively. One
clone specialized on glucose, one on acetate, and one
on glycerol.

The first clone was very efficient at importing glu-
cose, but secreted by-products of glycolysis (glycerol
and acetate) into the medium (Rosenzweig et al. 1994).
Secreting glycerol and acetate can increase the rate of
glucose uptake, so this clone is a strong candidate for
antagonistic pleiotropy leading to specialization on
glucose. In order to conclude that antagonistic pleiotro-
py, rather than mutation accumulation, is the basis for
this specialization, we would need to identify candidate
mutations involved in this phenotype, then place these
single mutations into the ancestral genetic background
and determine if a single mutation has both phenotypic
effects. One of the other clones has improved its ability
to utilize glycerol, and another increased its uptake
efficiency on acetate. Both retained their ability to use
glucose, so these organisms may be a case of special-
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ization due to fitness increases in a specialized envi-
ronment. They seem to be unable to compete for glu-
cose due to the dominant clones’ increased ability to
use this sugar, and so have specialized on acetate and
glycerol. In the case of the acetate specialist, a can-
didate mutation was identified, and competition ex-
periments showed that acetate specialists without this
mutation were unable to survive (Treves et al. 1998).
These experiments are utterly amazing (D. Dykhuizen,
personal observation), in that a stable community
evolved from a single clone in the simplest environ-
ment we can imagine.

This simple experimental system still has a great deal
to tell us about the evolution of ecological speciali-
zation. Using their knowledge of biochemistry, the
original authors speculated about mechanisms pro-
moting coexistence, and confirmed the mechanism for
the case of the acetate specialist. Apart from under-
standing the functional basis of this metabolic poly-
morphism, this system could be used to explore the
temporal dynamics of specialization. In particular, did
the glucose specialist evolve first with the other spe-
cialists descending from that clone in response to the
changed environment? If so, why did the acetate and
glycerol specialists have the ancestral ability to utilize
glucose? Could the enhanced ability to use these met-
abolic byproducts have already evolved before the glu-
cose specialist, preadapting these strains to their spe-
cialized niches? Or is it possible that they all arose
simultaneously? Repeating these experiments again
with dense sampling of the dynamics could provide
answers to these questions.

The evolution of specialization has also been studied
extensively by Cooper and coworkers (Cooper and
Lenski 2000, Cooper et al. 2001a, b). They examined
12 strains of E. coli which had grown on glucose at
378C for 20 000 generations. All 12 strains evolved to
be completely unable to use ribose as a carbon source.
Cooper et al. (2001b) studied this loss of function, and
demonstrated that the same mutation which eliminates
the ability to use ribose increases fitness on glucose,
providing strong evidence for antagonistic pleiotropy
in the loss of this part of the ancestral niche. However,
ribose might be an unusual case since the operon is
constitutively expressed in many strains of E. coli B;
a genetic loss of function might be the only way to
‘‘regulate’’ expression (Dykhuizen and Davies 1980).

An understanding of the general causes of special-
ization in these lines is still elusive, however. Cooper
and Lenski (2000) showed that decreasing growth rates
on a variety of alternative sugars roughly coincided
with increase in fitness on glucose. In the same lines,
decreases in maximum growth rates at extreme tem-
peratures (208, 408, 418, and 428C) occurred around the
time of increase in maximum growth rate at 378C (Coo-
per et al. 2001a). While this pattern of increase in fit-
ness in the evolved environment coupled with the de-
crease in function in other environments could be the

result of antagonistic pleiotropy, mutation accumula-
tion could create the same pattern due to hitchhiking.
Hitchhiking occurs when a mutation that is neutral or
detrimental is swept to fixation due to its linkage with
an advantageous mutation. The rate of fixation of
slightly deleterious mutations increases under hitch-
hiking (Birky and Walsh 1988). If the loss of function
on alternative resources or at alternative temperatures
were slightly deleterious, we could see a pattern of
fitness change indistinguishable from the pattern gen-
erated by antagonistic pleiotropy. Remold and Lenski’s
(2001) experiment argues that many mutations will
have no effect on glucose utilization (which is well
canalized), but should effect growth rate on other car-
bon sources (which are not as likely to be well cana-
lized). The time to fixation of neutral mutations will
decrease with hitchhiking, so it is possible that muta-
tions that were neutral on glucose (but not neutral on
other carbon sources) were fixed rapidly when the pop-
ulation underwent rapid adaptation to the glucose en-
vironment in the first 2000 generations. As the rate of
evolution slowed, so did the time to fixation of neutral
mutations. This lengthening of the time to fixation
would result in a temporarily slower rate of fixation,
in accord with the observed decrease in the rate of loss
of function during later parts of the experiment. The
relative importance of antagonistic pleiotropy versus
mutation accumulation in specialization will be deter-
mined in part by the difference in canalization between
phenotypes exposed to selection in the current niche,
and those unused there.

Our knowledge of E. coli’s metabolism might lead
to a more nuanced understanding of Cooper and co-
workers’ experiments. For example, there were some
carbon sources on which all lines initially decreased
their growth, only to have some lines at least return to
the level of the ancestor. Understanding why growth is
decreased for the entire experiment on some resources,
while rebounding in some lines on other resources will
provide insights into the basis for long-term speciali-
zation. We also await a better understanding of the
prevalence of different mechanisms of specialization.
Antagonistic pleiotropy has been demonstrated by Coo-
per et al. (2001b) in the loss of ribose metabolism as
well by Rosenzweig et al. (1994) in acetate and glycerol
secretion. Other mechanisms have also been observed,
such as the adaptation to a specific environment in the
acetate specialist studied by Treves et al. (1998). Fur-
ther tests, incorporating functional analyses in con-
junction with patterns of fitness change will help us
understand what the most prevalent mechanisms are.
We will also be able to understand how those changes
confer specific fitness consequences.

NEGATIVE FREQUENCY DEPENDENCE

One frequently observed phenomenon in microbial
experimental evolution is negative frequency depen-
dence, wherein genotypes are favored when rare and
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FIG. 1. The observed fitness relations between strains TD10C and TD2 vary across the methyl-galactoside/lactulose
resource axis and are also dependent on strain frequency. Strain TD2 is a derivative of the common laboratory strain of E.
coli, and TD10C is isogenic to TD2 except for a region around the lactose operon. The operon was transduced in from a
wild strain, is constitutive, and contains a permease which is 2.16 times more active that that in TD2 (Dykhuizen and Dean
1994). Fitnesses of TD10C were estimated using initial frequencies of 0–20% (rare; filled circles) or 80–100% (common;
open circles) on various proportions of the sugars lactulose and methyl-galactoside. The total concentration of sugar entering
the chemostat is held constant, and the percentage of methyl-galactoside refers to the percentage of the total sugar that is
methyl-galactoside. Between 23% and 30.5% methyl-galactoside, the fitness of TD10C is .1 when rare, and ,1 when
common. Here, TD10C and TD2 can coexist, maintained by frequency-dependent selection in a balanced polymorphism.
The error bars designate 95% confidence intervals. When TD10C is common, fitness is not linear because the high frequency
of TD10C alters the concentration of resource. This figure is redrawn from Fig. 9 of Lunzer et al. (2002).

selected against when common. These types of inter-
actions have also been implicated in maintaining spe-
cies diversity in ecological communities (Molofsky et
al. 2002). In several different experimental systems,
diversity has been maintained by negative frequency
dependence (Paquin and Adams 1983, Rosenzweig et
al. 1994, Turner et al. 1996, Elena and Lenski 1997,
Rozen and Lenski 2000). Two mechanisms can explain
coexistence: facilitation, where one type secretes a met-
abolic intermediate into the environment that can be
used by another type (e.g., Rosenzweig et al. 1994,
Turner et al. 1996) and demographic tradeoffs, where
one type has a growth or survival advantage in a chang-
ing environment (e.g., high vs. low glucose concentra-
tions; Turner et al. 1996). Recently, a third mechanism
involving antagonism either due to a toxic secreted

metabolite or elimination of a metabolite required for
survival has been observed (Rozen and Lenski 2000).

The repeated observation of negative frequency-de-
pendent interactions would suggest that such interac-
tions are ubiquitous in maintaining diversity. A mech-
anistic model of negative frequency dependence in che-
mostats with two limiting sugars suggests that fre-
quency dependence should only occur under a narrow
range of environmental parameters when resources are
interchangeable (Lunzer et al. 2002; Fig. 1). In this
model, the two genotypes each prefer a different sugar,
although each genotype can use the alternative carbon
source. While coexistence is possible, it can only occur
under a very limited subset of sugar concentrations. In
more variable environments, the range of parameters
that can maintain phenotypic variation might be ex-
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ceeded (Lunzer et al. 2002). This suggests that de-
mographic trade-offs may not maintain ecological di-
versity in many natural environments. The stability of
cross-feeding under conditions of high environmental
variability has yet to be empirically tested. An exper-
iment that could address this would be to determine
whether negative frequency dependence can evolve in
a variable environment. In most microbial experimental
evolution studies, the environment is a source of var-
iation to be eliminated. By focusing on a mechanistic
basis for coexistence, we are forced to confront the role
of environmental heterogeneity in evolutionary pro-
cesses.

POTENTIAL PROBLEMS WITH

SELECTION EXPERIMENTS

Is the artificial simplified nature of microbial exper-
iments so unrealistic as to be misleading? We have
suggested above that this might be true for the fre-
quency dependence experiments. In this section, we
discuss how some of these apparent weaknesses are
either hidden strengths or opportunities to incorporate
further environmental complexity. Most of the work
presented here has taken great pains to eliminate en-
vironmental heterogeneity and phenotypic plasticity.
While unrealistic, the advantage of simple systems is
that the causal mechanisms of selection are more easily
discovered. We think that a future productive avenue
of research will be to add additional complexity, par-
ticularly temporal. Does the time scale on which the
environment fluctuates affect niche diversification, and
will those traits that evolve differ with changes in the
periodicity of the environment?

A second complaint is that microbes are not relevant
to most ecologists. Not only are they not multicellular,
but they are asexual haploids. Setting aside the obser-
vation that the bulk of the planet’s biomass and bio-
chemical diversity is microbial (Whitman et al. 1998),
asexual haploid organisms can serve as excellent prox-
ies for interspecies interactions. Since bacteria are hap-
loid and easy to manipulate genetically, we can address
the mechanistic bases of adaptation and diversification.
For example, determining the role of pleiotropy in
adaptive change is relatively easy compared to prob-
lems when using sexual diploids (e.g., Notley-McRobb
et al. 2002). A third issue is the relative simplicity of
the organism and system. Much of the evolution dis-
cussed in this paper results from one or few genetic
changes. It is unclear to what extent these few changes
are analogous to speciation in sexual diploids, although
ecological divergence can happen rapidly and suddenly
in multicellular eukaryotes (Thompson 1998, Hendry
and Kinnison 1999).

CONCLUSIONS

While the concerns of experimental evolutionists
may seem distant from the concerns of most ecologists,
we believe that both groups are, in the end, interested

in similar questions. The use of single-celled asexual
prokaryotes growing in a constant, very simple, lab-
oratory environment may be unappealing to some ecol-
ogists. However, these simplifications have enabled re-
searchers to piece together a deep understanding of
several issues of ecological importance. Experiments
in these simple environments have shown that there
may be simple rules for G 3 E interactions arising
from metabolism. Likewise, these simple environments
have provided us with the ability to understand the
mechanistic basis of ecological specialization. On the
other hand, metabolic analysis has shown that while
negative frequency dependence is common in constant
laboratory environments, it is unlikely to maintain di-
versity in variable natural environments. If microbial
experimental evolution hopes to explain ecological di-
versity outside of the lab, it must investigate under what
conditions laboratory environments provide insight
into the natural world, and when they are misleading.

A variety of new molecular genetic techniques will
broaden the field in several ways. First, a number of
technologies will allow post-hoc exploration of
evolved organisms to understand how traits have
changed. For example, microarray technologies allow
investigators to simultaneously monitor the expression
of thousands of genes. Similarly, new techniques to
locate point mutations in bacterial genomes (Sokurenko
et al. 2001) will allow investigators to pinpoint the
genetic basis of adaptation. The use of genetically al-
tered microorganisms to test hypotheses about the evo-
lution of traits will create a more convincing under-
standing of how traits have evolved. While we suspect
that these techniques will never be employed by most
ecologists, we believe that their use in understanding
organisms will be appreciated by all.
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