4 research outputs found
Identification of unstable transcripts in Arabidopsis by cDNA microarray analysis: Rapid decay is associated with a group of touch- and specific clock-controlled genes
mRNA degradation provides a powerful means for controlling gene expression during growth, development, and many physiological transitions in plants and other systems. Rates of decay help define the steady state levels to which transcripts accumulate in the cytoplasm and determine the speed with which these levels change in response to the appropriate signals. When fast responses are to be achieved, rapid decay of mRNAs is necessary. Accordingly, genes with unstable transcripts often encode proteins that play important regulatory roles. Although detailed studies have been carried out on individual genes with unstable transcripts, there is limited knowledge regarding their nature and associations from a genomic perspective, or the physiological significance of rapid mRNA turnover in intact organisms. To address these problems, we have applied cDNA microarray analysis to identify and characterize genes with unstable transcripts in Arabidopsis thaliana (AtGUTs). Our studies showed that at least 1% of the 11,521 clones represented on Arabidopsis Functional Genomics Consortium microarrays correspond to transcripts that are rapidly degraded, with estimated half-lives of less than 60 min. AtGUTs encode proteins that are predicted to participate in a broad range of cellular processes, with transcriptional functions being over-represented relative to the whole Arabidopsis genome annotation. Analysis of public microarray expression data for these genes argues that mRNA instability is of high significance during plant responses to mechanical stimulation and is associated with specific genes controlled by the circadian clock
Knock-out mutants from an En-1 mutagenized Arabidopsis thaliana population generate phenylpropanoid biosynthesis phenotypes
A collection of 8,000 Arabidopsis thaliana plants carrying 48,000 insertions of the maize transposable element En-1 has been generated. This population was used for reverse genetic analyses to identify insertions in individual gene loci. By using a PCR-based screening protocol, insertions were found in 55 genes. En-1 showed no preference for transcribed or untranscribed regions nor for a particular orientation relative to the gene of interest. In several cases, En-1 was inserted within a few kilobases upstream or downstream of the gene. En-1 was mobilized from such positions into the respective gene to cause gene disruption. Knock-out alleles of genes involved in flavonoid biosynthesis were generated. One mutant line contained an En-1 insertion in the flavonol synthase gene (FLS) and showed drastically reduced levels of kaempferol. Allelism tests with other lines containing En-1 insertions in the flavanone 3-hydroxylase gene (F3H) demonstrated that TRANSPARENT TESTA 6 (TT6) encodes flavanone 3-hydroxylase. The f3h and fls null mutants complete the set of A. thaliana lines defective in early steps of the flavonoid pathway. These experiments demonstrate the efficiency of the screening method and gene disruption strategy used for assigning functions to genes defined only by sequence