9 research outputs found

    Influence of Processing Parameters on Laser Direct Joining of CFRTP and Stainless Steel

    No full text
    The CFRTP and the stainless steel were joined by the fiber laser, and the effect of processing parameters on the joint quality was investigated in detail.) The heat-affected zone on the stainless steel and the microstructure of the joint interface were examined and analyzed. The results showed that the laser joining process refines the microstructure of the fusion and heat-affected zones in the stainless steel. And the tensile strength of the joint was affected greatly by the laser power and scanning speed but slightly by the clamping pressure. With the PPS additive, the joint shear strength could be improved, and the optimal PPS additive thickness is 300 mu m. With the best parameters, joint with a shear strength of 15-17 MPa could be obtained as the laser power is 320-350 W, the scanning speed is 4-5 mm/s, the clamping pressure is about 0.5 Mpa, and the additive PPS thickness is about 300 mu m

    Influence of Processing Parameters on Laser Direct Joining of CFRTP and Stainless Steel

    No full text
    The CFRTP and the stainless steel were joined by the fiber laser, and the effect of processing parameters on the joint quality was investigated in detail. The heat-affected zone on the stainless steel and the microstructure of the joint interface were examined and analyzed. The results showed that the laser joining process refines the microstructure of the fusion and heat-affected zones in the stainless steel. And the tensile strength of the joint was affected greatly by the laser power and scanning speed but slightly by the clamping pressure. With the PPS additive, the joint shear strength could be improved, and the optimal PPS additive thickness is 300 μm. With the best parameters, joint with a shear strength of 15–17 MPa could be obtained as the laser power is 320–350 W, the scanning speed is 4-5 mm/s, the clamping pressure is about 0.5 Mpa, and the additive PPS thickness is about 300 μm

    N1-Guanyl-1,7-Diaminoheptane Sensitizes Estrogen Receptor Negative Breast Cancer Cells to Doxorubicin by Preventing Epithelial-Mesenchymal Transition through Inhibition of Eukaryotic Translation Initiation Factor 5A2 Activation

    No full text
    Background: Approximately 30% of breast cancer does not express the estrogen receptor (ER), which is necessary for endocrine-based therapy approaches. Many studies demonstrated that eukaryotic translation initiation factor 5A2 (eIF5A2) serves as a proliferation-related oncogene in tumorigenic processes. Methods: The present study used cell viability assays, EdU incorporation assays, western blot, and immunofluorescence to explore whether N1-guanyl-1,7-diaminoheptane (GC7), which inhibits eIF5A2 activation, exerts synergistic cytotoxicity with doxorubicin in breast cancer. Results: We found that GC7 enhanced doxorubicin cytotoxicity in ER-negative HCC1937 cells but had little effect in ER-positive MCF-7 and Bcap-37 cells. Administration of GC7 reversed the doxorubicin-induced epithelial-mesenchymal transition (EMT) in ER-negative breast cancer cells. Knockdown of eIF5A2 by siRNA inhibited the doxorubicin-induced EMT in ER-negative HCC1937 cells. Conclusion: These data demonstrated that GC7 combination therapy may enhance the therapeutic efficacy of doxorubicin in estrogen negative breast cancer cells by preventing EMT through inhibition of eIF5A2 activation
    corecore