205 research outputs found

    Assisted Tachyonic Inflation

    Full text link
    The model of inflation with a single tachyon field generates larger anisotropy and has difficulties in describing the formation of the Universe . In this paper we consider a model with multi tachyon fields and study the assisted inflationary solution. Our results show that this model satisfies the observation.Comment: 5 pages, no figures, a revised version and reference adde

    Reconstructing the Equation of State of Tachyon

    Full text link
    Recent progress in theoretical physics suggests that the dark energy in the universe might be resulted from the rolling tachyon field of string theory. Measurements to SNe Ia can be helpful to reconstruct the equation of state of the rolling tachyon which is a possible candidate of dark energy. We present a numerical analysis for the evolution of the equation of state of the rolling tachyon and derive the reconstruction equations for the equation of state as well as the potential.Comment: 6 pages, 3 figures, to appear Phys. Rev.

    Cosmology With Non-Minimally Coupled K-Field

    Full text link
    We consider non-minimally coupled (with gravity) scalar field with non-canonical kinetic energy. The form of the kinetic term is of Dirac-Born-Infeld (DBI) form.We study the early evolution of the universe when it is sourced only by the k-field, as well as late time evolution when both the matter and k-field are present. For the k-field, we have considered constant potential as well as potential inspired from Boundary String Field Theory (B-SFT). We show that it is possible to have inflationary solution in early time as well as late time accelerating phase. The solutions also exhibit attractor property in a sense that it does not depend on the initial conditions for a certain values of the parameters.Comment: 10 pages, Revtex style, 14 eps figures, to appear in General Relativity and Gravitatio

    Late-time cosmology in (phantom) scalar-tensor theory: dark energy and the cosmic speed-up

    Full text link
    We consider late-time cosmology in a (phantom) scalar-tensor theory with an exponential potential, as a dark energy model with equation of state parameter close to -1 (a bit above or below this value). Scalar (and also other kinds of) matter can be easily taken into account. An exact spatially-flat FRW cosmology is constructed for such theory, which admits (eternal or transient) acceleration phases for the current universe, in correspondence with observational results. Some remarks on the possible origin of the phantom, starting from a more fundamental theory, are also made. It is shown that quantum gravity effects may prevent (or, at least, delay or soften) the cosmic doomsday catastrophe associated with the phantom, i.e. the otherwise unavoidable finite-time future singularity (Big Rip). A novel dark energy model (higher-derivative scalar-tensor theory) is introduced and it is shown to admit an effective phantom/quintessence description with a transient acceleration phase. In this case, gravity favors that an initially insignificant portion of dark energy becomes dominant over the standard matter/radiation components in the evolution process.Comment: LaTeX file, 48 pages, discussion of Big Rip is enlarged, a reference is adde

    Cosmology from Rolling Massive Scalar Field on the anti-D3 Brane of de Sitter Vacua

    Full text link
    We investigate a string-inspired scenario associated with a rolling massive scalar field on D-branes and discuss its cosmological implications. In particular, we discuss cosmological evolution of the massive scalar field on the ant-D3 brane of KKLT vacua. Unlike the case of tachyon field, because of the warp factor of the anti-D3 brane, it is possible to obtain the required level of amplitude of density perturbations. We study the spectra of scalar and tensor perturbations generated during the rolling scalar inflation and show that our scenario satisfies the observational constraint coming from the Cosmic Microwave Background anisotropies and other observational data. We also implement the negative cosmological constant arising from the stabilization of the modulus fields in the KKLT vacua and find that this leads to a successful reheating in which the energy density of the scalar field effectively scales as a pressureless dust. The present dark energy can be also explained in our scenario provided that the potential energy of the massive rolling scalar does not exactly cancel with the amplitude of the negative cosmological constant at the potential minimum.Comment: RevTex4, 15 pages, 5 eps figures, minor clarifications and few references added, final version to appear in PR

    Discovery of the Binary Pulsar PSR B1259-63 in Very-High-Energy Gamma Rays around Periastron with H.E.S.S

    Get PDF
    We report the discovery of very-high-energy (VHE) gamma-ray emission of the binary system PSR B1259-63/SS 2883 of a radio pulsar orbiting a massive, luminous Be star in a highly eccentric orbit. The observations around the 2004 periastron passage of the pulsar were performed with the four 13 m Cherenkov telescopes of the H.E.S.S. experiment, recently installed in Namibia and in full operation since December 2003. Between February and June 2004, a gamma-ray signal from the binary system was detected with a total significance above 13 sigma. The flux was found to vary significantly on timescales of days which makes PSR B1259-63 the first variable galactic source of VHE gamma-rays observed so far. Strong emission signals were observed in pre- and post-periastron phases with a flux minimum around periastron, followed by a gradual flux decrease in the months after. The measured time-averaged energy spectrum above a mean threshold energy of 380 GeV can be fitted by a simple power law F_0(E/1 TeV)^-Gamma with a photon index Gamma = 2.7+-0.2_stat+-0.2_sys and flux normalisation F_0 = (1.3+-0.1_stat+-0.3_sys) 10^-12 TeV^-1 cm^-2 s^-1. This detection of VHE gamma-rays provides unambiguous evidence for particle acceleration to multi-TeV energies in the binary system. In combination with coeval observations of the X-ray synchrotron emission by the RXTE and INTEGRAL instruments, and assuming the VHE gamma-ray emission to be produced by the inverse Compton mechanism, the magnetic field strength can be directly estimated to be of the order of 1 G.Comment: 10 pages, 8 figures, accepted in Astronomy and Astrophysics on 2 June 2005, replace: document unchanged, replaced author field in astro-ph entry - authors are all members of the H.E.S.S. collaboration and three additional authors (99+3, see document

    Bridging geometries and potentials in DBI cosmologies

    Get PDF
    We investigate the link between the warp function and the potential in DBI cosmologies in connection with the possibility they represent power-law solutions. A prescription is given to take advantage of the known result that given a warp factor there is always a choice of potential resulting in a constant ratio between pressure and energy density. The method is illustrated with examples with interesting models for either the warp factor or the potential. We complete this investigation by giving a recipe to exploit symmetries in order to generate new solutions from existing ones; this method can be applied, for instance, to the power-law cosmologies obtained using our prescription.Comment: 7 pages, 3 figures, revte

    First-order formalism for dark energy and dust

    Full text link
    This work deals with first-order formalism for dark energy and dust in standard cosmology, for models described by real scalar field in the presence of dust in spatially flat space. The field dynamics may be standard or tachyonic, and we show how the equations of motion can be solved by first-order differential equations. We investigate a model to illustrate how the dustlike matter may affect the cosmic evolution using this framework.Comment: 5 pages, 1 figure; title changed, new author included, discussions extended, references added, version to appear in EPJ

    A low level of extragalactic background light as revealed by big gamma-rays from blazars

    Get PDF
    The diffuse extragalactic background light consists of the sum of the starlight emitted by galaxies through the history of the Universe, and it could also have an important contribution from the 'first stars', which may have formed before galaxy formation began. Direct measurements are difficult and not yet conclusive, owing to the large uncertainties caused by the bright foreground emission associated with zodiacal light1. An alternative approach2, 3, 4, 5 is to study the absorption features imprinted on the -ray spectra of distant extragalactic objects by interactions of those photons with the background light photons6. Here we report the discovery of -ray emission from the blazars7 H 2356 - 309 and 1ES 1101 - 232, at redshifts z = 0.165 and z = 0.186, respectively. Their unexpectedly hard spectra provide an upper limit on the background light at optical/near-infrared wavelengths that appears to be very close to the lower limit given by the integrated light of resolved galaxies8. The background flux at these wavelengths accordingly seems to be strongly dominated by the direct starlight from galaxies, thus excluding a large contribution from other sources—in particular from the first stars formed9. This result also indicates that intergalactic space is more transparent to -rays than previously thought
    corecore