519 research outputs found

    Arecibo Timing and Single Pulse Observations of 18 Pulsars

    Full text link
    We present new results of timing and single pulse measurements for 18 radio pulsars discovered in 1993 - 1997 by the Penn State/NRL declination-strip survey conducted with the 305-m Arecibo telescope at 430 MHz. Long-term timing measurements have led to significant improvements of the rotational and the astrometric parameters of these sources, including the millisecond pulsar, PSR J1709+2313, and the pulsar located within the supernova remnant S147, PSR J0538+2817. Single pulse studies of the brightest objects in the sample have revealed an unusual "bursting" pulsar, PSR J1752+2359, two new drifting subpulse pulsars, PSR J1649+2533 and PSR J2155+2813, and another example of a pulsar with profile mode changes, PSR J1746+2540. PSR J1752+2359 is characterized by bursts of emission, which appear once every 3-5 min. and decay exponentially on a ~45 sec timescale. PSR J1649+2533 spends ~30% of the time in a null state with no detectable radio emission.Comment: submitted to Ap

    New frontiers at the interface of general relativity and quantum optics

    Get PDF
    In the present paper we follow three major themes: (i) concepts of rotation in general relativity, (ii) effects induced by these generalized rotations, and (iii) their measurement using interferometry. Our journey takes us from the Foucault pendulum via the Sagnac interferometer to manifestations of gravito-magnetism in double binary pulsars and in Gödel\u27s Universe. Throughout our article we emphasize the emerging role of matter wave interferometry based on cold atoms or Bose-Einstein condensates leading to superior inertial sensors. In particular, we advertise recent activities directed towards the operation of a coherent matter wave interferometer in an extended free fall. © 2009 Springer Science+Business Media B.V

    Survey of Planetary Nebulae at 30 GHz with OCRA-p

    Full text link
    We report the results of a survey of 442 planetary nebulae at 30 GHz. The purpose of the survey is to develop a list of planetary nebulae as calibration sources which could be used for high frequency calibration in future. For 41 PNe with sufficient data, we test the emission mechanisms in order to evaluate whether or not spinning dust plays an important role in their spectra at 30 GHz. The 30-GHz data were obtained with a twin-beam differencing radiometer, OCRA-p, which is in operation on the Torun 32-m telescope. Sources were scanned both in right ascension and declination. We estimated flux densities at 30 GHz using a free-free emission model and compared it with our data. The primary result is a catalogue containing the flux densities of 93 planetary nebulae at 30 GHz. Sources with sufficient data were compared with a spectral model of free-free emission. The model shows that free-free emission can generally explain the observed flux densities at 30 GHz thus no other emission mechanism is needed to account for the high frequency spectra.Comment: 10 pages, 7 Postscript figures, to be published in A&

    The 'molecularly unstratified' patient: a focus for moral, psycho-social and societal research

    Get PDF
    The biomedical paradigm of personalised precision medicine - identification of specific molecular targets for treatment of an individual patient - offers great potential for treatment of many diseases including cancer. This article provides a critical analysis of the promise, the hype and the pitfalls attending this approach. In particular, we focus on 'molecularly unstratified' patients - those who, for various reasons, are not eligible for a targeted therapy. For these patients, hope-laden therapeutic options are closed down, leaving them left out, and left behind, bobbing untidily about in the wake of technological and scientific 'advance'. This process creates a distinction between groups of patients on the basis of biomarkers and challenges our ability to provide equitable access to care for all patients. In broadening our consideration of these patients to include the research ecosystem that shapes their experience, we hypothesise that the combination of immense promise with significant complexity creates particular individual and organisational challenges for researchers. The novelty and complexity of their research consumes high levels of resource, possibly in parallel with undervaluing other 'low hanging fruit', and may be challenging current regulatory thinking. We outline future research to consider the societal, psycho-social and moral issues relating to 'molecularly unstratified' patients, and the impact of the drive towards personalisation on the research, funding, and regulatory ecosystem

    Double radio peak and non-thermal collimated ejecta in RS Ophiuchi following the 2006 outburst

    Get PDF
    We report Multi-Element Radio-Linked Interferometer Network, Very Large Array, One-Centimetre Radio Array, Very Long Baseline Array (VLBA), Effelsberg and Giant Metrewave Radio Telescope observations beginning 4.5 days after the discovery of RS Ophiuchi undergoing its 2006 recurrent nova outburst. Observations over the first 9 weeks are included, enabling us to follow spectral development throughout the three phases of the remnant development. We see dramatic brightening on days 4 to 7 at 6 GHz and an accompanying increase in other bands, particularly 1.46 GHz, consistent with transition from the initial ‘free expansion’ phase to the adiabatic expansion phase. This is complete by day 13 when the flux density at 5 GHz is apparently declining from an unexpectedly early maximum (compared with expectations from observations of the 1985 outburst). The flux density recovered to a second peak by approximately day 40, consistent with behaviour observed in 1985. At all times the spectral index is consistent with mixed non-thermal and thermal emission. The spectral indices are consistent with a non-thermal component at lower frequencies on all dates, and the spectral index changes show that the two components are clearly variable. The estimated extent of the emission at 22 GHz on day 59 is consistent with the extended east and west features seen at 1.7 GHz with the VLBA on day 63 being entirely non-thermal. We suggest a two-component model, consisting of a decelerating shell seen in mixed thermal and non-thermal emission plus faster bipolar ejecta generating the non-thermal emission, as seen in contemporaneous VLBA observations. Our estimated ejecta mass of 4 ± 2 × 10−7 M⊙ is consistent with a white dwarf (WD) mass of 1.4 M⊙. It may be that this ejecta mass estimate is a lower limit, in which case a lower WD mass would be consistent with the data
    corecore