14 research outputs found

    Too much water? Not enough? In situ monitoring of the mechanochemical reaction of copper salts with dicyandiamide

    Get PDF
    In situ monitoring of mechanochemical reactions between dicyandiamide (DCD) and CuX2 salts (X = Cl-, NO3-), for the preparation of compounds of agrochemical interest, showed the appearance of a number of phases. It is demonstrated that milling conditions, such as the amount of water added in wet grinding and/or the milling frequency, may affect the course of the mechanochemical reactions, and drive the reaction towards the formation of different products. It has been possible to discover by in situ monitored experiments two novel crystalline forms, namely the neutral complexes [Cu(DCD)(2)(OH2)(2)(NO3)(2)] (2) and [Cu(DCD)(2)(OH2)Cl-2]center dot H2O (4), in addition to the previously known molecular salt [Cu(DCD)(2)(OH2)(2)] [NO3](2)center dot 2H(2)O (1, DIVWAG) and neutral complex [Cu(DCD)(2)(OH2)Cl-2] (3, AQCYCU), for which no synthesis conditions were available. Compounds 2 and 4 were fully characterized via a combination of solid-state techniques, including X-ray diffraction, Raman spectroscopy and TGA

    A mechanistic perspective on plastically flexible coordination polymers

    Get PDF
    Mechanical flexibility in single crystals of covalently bound materials is a fascinating and poorly understood phenomenon. We present here the first example of a plastically flexible one鈥恉imensional (1D) coordination polymer. The compound [Zn(渭鈥怌l)2(3,5鈥恉ichloropyridine)2]n is flexible over two crystallographic faces. Remarkably, the single crystal remains intact when bent to 180掳. A combination of microscopy, diffraction, and spectroscopic studies have been used to probe the structural response of the crystal lattice to mechanical bending. Deformation of the covalent polymer chains does not appear to be responsible for the observed macroscopic bending. Instead, our results suggest that mechanical bending occurs by displacement of the coordination polymer chains. Based on experimental and theoretical evidence, we propose a new model for mechanical flexibility in 1D coordination polymers. Moreover, our calculations propose a cause of the different mechanical properties of this compound and a structurally similar elastic material

    Investigating the role of reducing agents on mechanosynthesis of Au nanoparticles

    Get PDF
    Control over the bottom up synthesis of metal nanoparticles (NP) depends on many experimental factors, including the choice of stabilising and reducing agents. By selectively manipulating these species, it is possible to control NP characteristics through solution-phase synthesis strategies. It is not known, however, whether NPs produced from mechanochemical syntheses are governed by the same rules. Using the Au NPs mechanosynthesis as a model system, we investigate how a series of common reducing agents affect both the reduction kinetics and size of Au NPs. It is shown that the relative effects of reducing agents on mechanochemical NP synthesis differ significantly from their role in analogous solution-phase reactions. Hence, strategies developed for control over NP growth in solution are not directly transferrable to environmentally benign mechanochemical approaches. This work demonstrates a clear need for dedicated, systematic studies on NP mechanosynthesis.Peer reviewe

    Mechanochemical Syntheses of Isostructural Luminescent Cocrystals of 9-Anthracenecarboxylic Acid with two Dipyridines Coformers

    Get PDF
    Tuning and controlling the solid-state photophysical properties of organic luminophore are very important to develop next-generation organic luminescent materials. With the aim of discovering new functional luminescent materials, new cocrystals of 9-anthracene carboxylic acid (ACA) were prepared with two different dipyridine coformers: 1,2-bis(4-pyridyl)ethylene and 1,2-bis(4-pyridyl)ethane. The cocrystals were successfully obtained by both mechanochemical approaches and conventional solvent crystallization. The newly obtained crystalline solids were characterized thoroughly using a combination of single crystal X-ray diffraction, powder X-ray diffraction, Fourier-transform infrared spectroscopy, differential thermal analysis, and thermogravimetric analysis. Structural analysis revealed that the cocrystals are isostructural, exhibiting two-fold interpenetrated hydrogen bonded networks. While the O鈥揌路路路N hydrogen bonds adopts a primary role in the stabilization of the cocrystal phases, the C鈥揌路路路O hydrogen bonding interactions appear to play a significant role in guiding the three-dimensional assembly. Both 蟺路路路蟺 and C-H路路路蟺 interactions assist in stabilizing the interpenetrated structure. The photoluminescence properties of both the starting materials and cocrystals were examined in their solid states. All the cocrystals display tunable photophysical properties as compared to pure ACA. Density functional theory simulations suggest that the modified optical properties result from charge transfers between the ACA and coformer molecules in each case. This study demonstrates the potential of crystal engineering to design solid-state luminescence switching materials through cocrystallization.Peer Reviewe

    Elastic Flexibility in an Optically Active Naphthalidenimine-Based Single Crystal

    Get PDF
    Organic single crystals that combine mechanical flexibility and optical properties are important for developing flexible optical devices, but examples of such crystals remain scarce. Both mechanical flexibility and optical activity depend on the underlying crystal packing and the nature of the intermolecular interactions present in the solid state. Hence, both properties can be expected to be tunable by small chemical modifications to the organic molecule. By incorporating a chlorine atom, a reportedly mechanically flexible crystal of (E)-1-(4-bromo-phenyl)iminomethyl-2-hydroxyl-naphthalene (BPIN) produces (E)-1-(4-bromo-2-chloro-phenyl)iminomethyl-2-hydroxyl-naphthalene (BCPIN). BCPIN crystals show elastic bending similar to BPIN upon mechanical stress, but exhibit a remarkable difference in their optical properties as a result of the chemical modification to the backbone of the organic molecule. This work thus demonstrates that the optical properties and mechanical flexibility of molecular materials can, in principle, be tuned independently.Peer Reviewe

    Towards an atomistic origin for Elasto-Plastic Bending in Organic Molecular Crystals

    No full text
    Mechanically flexible single crystals of molecular materials offer potential for a multitude of new directions in advanced materials design. Before the full potential of such materials can be exploited, insight into their mechanisms of action must be better understood. Such insight can be only obtained through synergistic use of advanced experimentation and simulation. We herein report the first detailed mechanistic study of elasto-plastic flexibility in a molecular solid. An atomistic origin for this mechanical behaviour is proposed through a combination of atomic force microscopy, 渭-focus synchrotron X-ray diffraction, Raman spectroscopy, ab initio simulation, and computed elastic tensors. Our findings suggest that elastic and plastic bending are intimately linked and result from extensions of the same molecular deformations. The proposed mechanism bridges the gap between contested mechanisms, suggesting its applicability as a general mechanism for elastic and plastic bending in organic molecular crystals
    corecore