123 research outputs found

    Quantifying and reducing uncertainties in estimated soil CO2 fluxes with hierarchical data-model integration

    Get PDF
    Non-steady state chambers are often employed to measure soil CO2 fluxes. CO2 concentrations (C) in the headspace are sampled at different times (t), and fluxes (f) are calculated from regressions of C versus t based a limited number of observations. Variability in the data can lead to poor fits and unreliable f estimates; groups with too few observations or poor fits are often discarded, resulting in “missing” f values. We solve these problems by fitting linear (steady state) and non-linear (non-steady state, diffusion based) models of C versus t, within in a hierarchical Bayesian framework. Data are from the Prairie Heating and CO2 Enrichment (PHACE) study that manipulated atmospheric CO2, temperature, soil moisture, and vegetation. CO2 was collected from static chambers bi-weekly during five growing seasons, resulting in >12,000 samples and >3100 groups and associated fluxes. We compare f estimates based on non-hierarchical and hierarchical Bayesian (B vs HB) versions of the linear and diffusion-based (L vs D) models, resulting in four different models (BL, BD, HBL, HBD). Three models fit the data exceptionally well (R2 ≥ 0.98), but the BD model was inferior (R2 = 0.87). The non-hierarchical models (BL, BD) produced highly uncertain f estimates f (wide 95% CIs), whereas the hierarchical models (HBL, HBD) produced very precise estimates. Of the hierarchical versions, the linear model (HBL) underestimated f by ~33% relative to the non-steady state model (HBD). The hierarchical models offer improvements upon traditional non-hierarchical approaches to estimating f, and we provide example code for the models

    Climate change reduces the net sink of CH\u3csub\u3e4\u3c/sub\u3e and N\u3csub\u3e2\u3c/sub\u3eO in a semiarid grassland

    Get PDF
    Atmospheric concentrations of methane (CH4) and nitrous oxide (N2O) have increased over the last 150 years because of human activity. Soils are important sources and sinks of both potent greenhouse gases where their production and consumption are largely regulated by biological processes. Climate change could alter these processes thereby affecting both rate and direction of their exchange with the atmosphere. We examined how a rise in atmospheric CO2 and temperature affected CH4 and N2O fluxes in a well-drained upland soil (volumetric water content ranging between 6% and 23%) in a semiarid grassland during five growing seasons. We hypothesized that responses of CH4 and N2O fluxes to elevated CO2 and warming would be driven primarily by treatment effects on soil moisture. Previously we showed that elevated CO2 increased and warming decreased soil moisture in this grassland. We therefore expected that elevated CO2 and warming would have opposing effects on CH4 and N2O fluxes. Methane was taken up throughout the growing season in all 5 years. A bell-shaped relationship was observed with soil moisture with highest CH4 uptake at intermediate soil moisture. Both N2O emission and uptake occurred at our site with some years showing cumulative N2O emission and other years showing cumulative N2O uptake. Nitrous oxide exchange switched from net uptake to net emission with increasing soil moisture. In contrast to our hypothesis, both elevated CO2 and warming reduced the sink of CH4 and N2O expressed in CO2 equivalents (across 5 years by 7% and 11% for elevated CO2 and warming respectively) suggesting that soil moisture changes were not solely responsible for this reduction. We conclude that in a future climate this semiarid grassland may become a smaller sink for atmospheric CH4 and N2O expressed in CO2-equivalents

    Disentangling root responses to climate change in a semiarid grassland

    Get PDF
    Future ecosystem properties of grasslands will be driven largely by belowground biomass responses to climate change, which are challenging to understand due to experimental and technical constraints. We used a multi-faceted approach to explore single and combined impacts of elevated CO2 and warming on root carbon (C) and nitrogen (N) dynamics in a temperate, semiarid, native grassland at the Prairie Heating and CO2 Enrichment experiment. To investigate the indirect, moisture mediated effects of elevated CO2, we included an irrigation treatment. We assessed root standing mass, morphology, residence time and seasonal appearance/disappearance of community-aggregated roots, as well as mass and N losses during decomposition of two dominant grass species (a C3 and a C4). In contrast to what is common in mesic grasslands, greater root standing mass under elevated CO2 resulted from increased production, unmatched by disappearance. Elevated CO2 plus warming produced roots that were longer, thinner and had greater surface area, which, together with greater standing biomass, could potentially alter root function and dynamics. Decomposition increased under environmental conditions generated by elevated CO2, but not those generated by warming, likely due to soil desiccation with warming. Elevated CO2, particularly under warming, slowed N release from C4—but not C3—roots, and consequently could indirectly affect N availability through treatment effects on species composition. Elevated CO2 and warming effects on root morphology and decomposition could offset increased C inputs from greater root biomass, thereby limiting future net C accrual in this semiarid grassland

    Drought impacts on tree root traits are linked to their decomposability and net carbon release

    Get PDF
    Root trait plasticity can facilitate plant adjustment to water shortages, but the impact of altered traits on belowground carbon (C) cycling is mostly unknown. While drought and nutrient availability can alter root morphological and chemical traits that may affect root decomposition, direct assessments of drought mediated changes on decomposability are not available. We exposed four tree species contrasting in drought stress tolerance and root traits to three dry-down and recovery periods (over 5 months after 11 months of growth in well-watered conditions) under high and low nutrient conditions. We then assessed early stage root decomposability in relation to their morphology and chemistry as well as implications for CO2 release when accounting for effects on root biomass. While each species showed a unique set of responses, drought generally reduced root diameter and increased nitrogen concentration. We found limited evidence that morphological responses to drought were counteracted by high nutrient supply. Results indicated that the degree of association between morphological and nutrient root trait responses to drought and decomposability varied with different species. However, across these contrasting woody species, drought-induced increases in nitrogen and phosphorus concentrations were associated with drought-induced increases in early stage root decomposability. When accounting for changes in root biomass, estimated overall C loss through root decomposition increased with drought stress. Our experimental results demonstrate that changes in tree root traits with drought can enhance C loss via root decomposition, and with other factors being equal, drought may potentially contribute to a positive feedback to climate change. Our findings contribute empirical evidence to help disentangle the multiple factors involved in root contribution to C balances at the ecosystem level

    Disentangling root responses to climate change in a semiarid grassland

    Get PDF
    Future ecosystem properties of grasslands will be driven largely by belowground biomass responses to climate change, which are challenging to understand due to experimental and technical constraints. We used a multi-faceted approach to explore single and combined impacts of elevated CO2 and warming on root carbon (C) and nitrogen (N) dynamics in a temperate, semiarid, native grassland at the Prairie Heating and CO2 Enrichment experiment. To investigate the indirect, moisture mediated effects of elevated CO2, we included an irrigation treatment. We assessed root standing mass, morphology, residence time and seasonal appearance/disappearance of community-aggregated roots, as well as mass and N losses during decomposition of two dominant grass species (a C3 and a C4). In contrast to what is common in mesic grasslands, greater root standing mass under elevated CO2 resulted from increased production, unmatched by disappearance. Elevated CO2 plus warming produced roots that were longer, thinner and had greater surface area, which, together with greater standing biomass, could potentially alter root function and dynamics. Decomposition increased under environmental conditions generated by elevated CO2, but not those generated by warming, likely due to soil desiccation with warming. Elevated CO2, particularly under warming, slowed N release from C4—but not C3—roots, and consequently could indirectly affect N availability through treatment effects on species composition. Elevated CO2 and warming effects on root morphology and decomposition could offset increased C inputs from greater root biomass, thereby limiting future net C accrual in this semiarid grassland

    Seasonal Biotic Processes Vary the Carbon Turnover by Up To One Order of Magnitude in Wetlands

    Get PDF
    Soil Organic Carbon (SOC) turnover t in wetlands and the corresponding governing processes are still poorly represented in numerical models. t is a proxy to the carbon storage potential in each SOC pool and C fluxes within the whole ecosystem; however, it has not been comprehensively quantified in wetlands globally. Here, we quantify the turnover time t of various SOC pools and the governing biotic and abiotic processes in global wetlands using a comprehensively tested process-based biogeochemical model. Globally, we found that t ranges between 1 and 1,000 years and is controlled by anaerobic (in 78% of global wetlands area) and aerobic (15%) respiration, and by abiotic destabilization from soil minerals (5%). t in the remaining 2% of wetlands is controlled by denitrification, sulfur reduction, and leaching below the subsoil. t can vary by up to one order of magnitude in temperate, continental, and polar regions due to seasonal temperature and can shift from being aerobically controlled to anaerobically controlled. Our findings of seasonal variability in SOC turnover suggest that wetlands are susceptible to climate-induced shifts in seasonality, thus requiring better accounting of seasonal fluctuations at geographic scales to estimate C exchanges between land and atmosphere

    Soil Microbes Compete Strongly with Plants for Soil Inorganic and Amino Acid Nitrogen in a Semiarid Grassland Exposed to Elevated CO\u3ci\u3e2\u3c/i\u3e and Warming

    Get PDF
    Free amino acids (FAAs) in soil are an important N source for plants, and abundances are predicted to shift under altered atmospheric conditions such as elevated CO2. Composition, plant uptake capacity, and plant and microbial use of FAAs relative to inorganic N forms were investigated in a temperate semiarid grassland exposed to experimental warming and free-air CO2 enrichment. FAA uptake by two dominant grassland plants, Bouteloua gracilis and Artemesia frigida, was determined in hydroponic culture. B. gracilis and microbial N preferences were then investigated in experimental field plots using isotopically labeled FAA and inorganic N sources. Alanine and phenylalanine concentrations were the highest in the field, and B. gracilis and A. frigida rapidly consumed these FAAs in hydroponic experiments. However, B. gracilis assimilated little isotopically labeled alanine, ammonium and nitrate in the field. Rather, soil microbes immobilized the majority of all three N forms. Elevated CO2 and warming did not affect plant or microbial uptake. FAAs are not direct sources of N for B. gracilis, and soil microbes outcompete this grass for organic and inorganic N when N is at peak demand within temperate semiarid grasslands

    Degradation of conventional, biodegradable and oxo-degradable microplastics in a soil using a δ13C technique

    Get PDF
    Context. A significant amount of conventional plastics waste, especially in the form of microplastics (MPs), has accumulated in soils due to its limited degradation. Oxo-degradable and biodegradable plastics have also contributed to MP contamination in soils. Aims. In this study, we examined the degradation of a conventional plastic [fruit and vegetable (F&V) bag], two biodegradable plastics (bin liner and mulch film) and an oxo-degradable plastic (drinking straw). Methods. These plastics (5 mm) were mixed into a soil and incubated in the laboratory at 37 ± 1°C for 185 days. The CO2-carbon (C) mineralisation of the four plastics was determined using a δ13C technique, because the difference in the δ13C values of studied plastics and the experimental soil was ≥10‰. Key results. Bin liner showed the greatest C mineralisation (5.7%), followed by mulch film (4.1%), straw (0.4%) and F&V bag (0.3%) at the end of the incubation period. All plastics, except the mulch film for 23–77 days of incubation, caused a positive priming effect on soil organic carbon (SOC). Fourier transform infra-red spectroscopy and scanning electron microscopy analyses were consistent with theC mineralisation data. Conclusions. This study determines the degradation of various MPs in soil using a reliable and practical δ13C method, which has been lacking in this field of study. The priming effect of various MPs on SOC is a significant finding. Implications. The lack of consideration of priming effect on SOC may overestimate the mineralisation of plastics in soil

    Thresholds in decoupled soil-plant elements under changing climatic conditions

    Get PDF
    Background and aims: aridity has increased in the past decades and will probably continue to increase in arid and semiarid regions. Here we decipher the plant and soil capacity to retain metal cations when climate evolves to more arid conditions. - Methods: we analyzed K, Na, Ca, Mg, Fe, Mn, Zn and Cu concentrations in 580 soil samples and 666 plant (shoot and root) samples along a 3600 km aridity gradient in northern China. - Results: the concentrations of soil exchangeable K, Mg, Mn, Fe and Cu clearly decreased with increasing aridity due to the relationships of aridity with soil clay content and soil pH. Increases in exchangeable Na and Ca concentrations at mid- and high-aridity levels are probably due to the soil salinization, whereas increased exchangeable Fe concentrations at extreme levels of aridity may be more related to a reduced pH. Element concentrations in both plant shoots and roots were unrelated to soil exchangeable element concentrations; instead they increased monotonously with increasing aridity, corresponding with decreases in plant size and shoot/root ratios. The shoot/root mineralomass ratios in general increased with increasing aridity. The proportional higher element contents in shoots than in roots with increasing aridity are related to increased water uptake and/or use efficiency. - Conclusions: the extractability of soil elements in response to changing climate varied with the nature of specific elements that are controlled by biological and geochemical processes, i.e., some decreased linearly with increasing aridity, whereas others first decreased and then increased with different thresholds. These contrasting effects of aridity on nutrient availability could further constrain plant growth and should be incorporated into biogeochemical models. The prevailing paradigm of a positive relationship between concentrations of plant and soil elements needs to be reconsidered under changing climatic condition
    • …
    corecore