171 research outputs found

    Consumer responses to really new products: examining the impacts of learning strategies and presentation formats on product comprehension and attitude formation

    Get PDF
    Mental simulations and analogies have been identified as powerful learning tools for RNPs. Furthermore, visuals in advertising have recently been conceptualized as meaningful sources of information as opposed to peripheral cues and thus may help consumers learn about RNPs. The study of visual attention may also contribute to understanding the links between conceptual and perceptual analyses when learning for a RNP. Two conceptual models are developed. the first model consists of causal relationships between the attributes of advertising stimuli for RNPs and consumer responses, as well as mediating influences. The second model focuses on the role of visual attention in product comprehension as a response to advertising stimuli. Two experiments are conducted: a Web-Experiment and an eye-tracking experiment. The first experiment (858 subjects) examines the effect of learning strategies (mental simulation vs. analogy vs. no analogy/no mental simulation) and presentation formats (words vs. pictures) on individual responses. The mediating role of emotions is assessed. The second experiment investigates the effect of learning strategies and presentation formats on product comprehension, along with the role of attention (17 subjects). The findings from experiment 1 indicate that learning strategies and presentation formats can either enhance or undermine the effect of advertising stimuli on individual responses. Moreover, the nature of the product (i.e. hedonic vs. utilitarian vs. hybrid) should be considered when designing communications for RNPs. The mediating role of emotions is verified. Experiment 2 suggests that an increase in attention to the message may either reflect enhanced comprehension or confusion

    Numerical simulation of a compressible homogeneous, turbulent shear flow

    Get PDF
    A direct, low Reynolds number, numerical simulation was performed on a homogeneous turbulent shear flow. The full compressible Navier-Stokes equations were used in a simulation on the ILLIAC IV computer with a 64,000 mesh. The flow fields generated by the code are used as an experimental data base, to examine the behavior of the Reynols stresses in this simple, compressible flow. The variation of the structure of the stresses and their dynamic equations as the character of the flow changed is emphasized. The structure of the tress tensor is more heavily dependent on the shear number and less on the fluctuating Mach number. The pressure-strain correlation tensor in the dynamic uations is directly calculated in this simulation. These correlations are decomposed into several parts, as contrasted with the traditional incompressible decomposition into two parts. The performance of existing models for the conventional terms is examined, and a model is proposed for the 'mean fluctuating' part

    A study of ignition phenomena of bulk metals by radiant heating

    Get PDF
    Early research on combustion of metals was motivated by the knowledge of the large heat release and corresponding high temperatures associated with metal-oxygen reactions. The advent of space flight brought about an increased interest in the ignition and combustion of metallic particles as additives in solid rocket propellants. More recently, attention has been given to the flammability properties of bulk, structural metals due to the number of accidental explosions of metal components in high-pressure oxygen systems. The following work represents a preliminary study that is part of a broader research effort aimed at providing further insight into the phenomena of bulk metal combustion by looking at the effects of gravity on the ignition behavior of metals. The scope of this preliminary experimental study includes the use of a non-coherent, continuous radiation ignition source, the measurement of temperature profiles of a variety of metals and a qualitative observation of the ignition phenomena at normal gravity. The specific objectives of the investigation include: (1) a feasibility study of the use of a continuous radiation source for metal ignition; (2) testing and characterization of the ignition behavior of a variety of metals; and (3) building a preliminary experimental database on ignition of metals under normal gravity conditions

    Boost-phase discrimination research

    Get PDF
    The final report describes the combined work of the Computational Chemistry and Aerothermodynamics branches within the Thermosciences Division at NASA Ames Research Center directed at understanding the signatures of shock-heated air. Considerable progress was made in determining accurate transition probabilities for the important band systems of NO that account for much of the emission in the ultraviolet region. Research carried out under this project showed that in order to reproduce the observed radiation from the bow shock region of missiles in their boost phase it is necessary to include the Burnett terms in the constituent equation, account for the non-Boltzmann energy distribution, correctly model the NO formation and rotational excitation process, and use accurate transition probabilities for the NO band systems. This work resulted in significant improvements in the computer code NEQAIR that models both the radiation and fluid dynamics in the shock region

    The end of stigma? Understanding the dynamics of legitimisation in the context of TV series consumption

    Get PDF
    This research contributes to prior work on stigmatisation by looking at stigmatisation and legitimisation as social processes in the context of TV series consumption. Using in-depth interviews, we show that the dynamics of legitimisation are complex and accompanied by the reproduction of existing stigmas and creation of new stigmas

    Progress in computing nozzle/plume flow fields

    Get PDF
    The long-term goal is to develop the capability to predict chemically-reacting, multi-stream nozzle and plume flow fields. Two basic Navier-Stokes solvers, including the widely used F-3D code, are upgraded to include several upwind difference schemes and portable chemistry packages. Current computational capabilities for solving equilibrium single-stream and multi-stream, frozen gas, and finite rate chemistry problems are described. A variety of complex nozzle and plume flows were computed. Solutions presented include axisymmetric plume flow for ideal and equilibrium air, 3-D NASP nozzle/afterbody flow, and an internal nozzle calculation comparing various finite-rate chemistry packages
    • …
    corecore