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NUMERICAL SIMULATION OF A COMPRESSIBLE, 

HOMOGENEOUS, TURBULENT SHEAR FLOW 

Abstract 

A direct, low Reynolds number, numerical simulation has been per-

formed on a homogeneous turbulent shear flow. The full compressible 

Navier-Stokes equations were used in a simulation on the ILLIAC IV com­

puter w:lth a 643 mesh. 

Thl2 flow fields generated by the code were used as an experimental 

data ba.se, to examine the behavior of the Reynolds stresses in this 

simple, compressible flow. Emphasis was placed on determining the 

variation of the structure of the stresses and their dynamic equations 

as the character of the flow changed. 

Thle objectives of this work center round the modeling of these 

stresses in a compressible turbulent flow. It has been found that the 

structure of the stress tensor is more heavily dependent on the shear 

number and less on the fluctuating Mach number than was originally 

thought. 

The pressure-strain correlation tensor in the dynamic stress equa­

tions can be directly calculated in this simulation. It is found that 

these correlations can be decomposed into several parts, as contrasted 

with the traditional incompreHsible decomposition into two parts. 'Ihe 

performance of existing modelH for the conventional terms is examined, 

and a new model is proposed for the "mean-fluctuating" part. 

The additional terms in the pressure-strain tensor relate to the 

compressibility of the fluid. They are found to be of the same order of 

magnitude as the conventional terms. The modeling, therefore, becomes 

quite :lmportant in an averaged simulation of the Navier-Stokes equa­

tions. The behavior of these terms is examined and suggestions made for 

their modeling. A new class of models based on a structural similarity 

concept is examined. This type of model is used for the entire pressure 

strain tensor and looks promising. 

1111 these simulations the computer is used as a ntunerical wind tun­

nel, a capability only recently available with the advent of large, 
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fast, "vector" machines like the ILLIAC IV. The 'ability to measure 

quantities that were previously inaccessible from these simulations 

should prove to be a great boon to turbulence research. Further direct 

and large eddy simulations in "building block" flows, such as the homo­

geneous shear flow, are therefore highly recommended. They can lead to 

a fuller understanding of the physics of turbulence, while at the same 

time providing information to the conventional turbulence modeler who is 

interested in technologically useful flows. 
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Chapter I 

MOTIVATION AND LITERATURE 

1.1 Introduction 

Modeling of turbulent fluid flows is a subject of great scientific 

and technological interest. Turbulent flows by their nature contain a 

large range of sizes of motion (length scales) and an equivalent range 

of time seales. This range of scales causes problems for the flow simu­

lator because the smallest and largest scales of motion in his flow 

cannot be represented at the same time on a relatively coarse mesh. The 

required mesh systems are beyond the capability of modern computers. 

t..e bE!lieve that the Navier-Stokes equations describe the flow of a 

Newtonian fluid. Reynolds (1883) applied an averaging operator to the 

Navier-Stokes equations in the hope that the resulting equations would 

be easier to solve. Because these equations are nonlinear, averaging . 
introduces unknown correlations that prevent the system of equations 

from being complete (closed), unless assumptions are introduced about 

ho~, these correlations behave. The unknown correlations in the momentum 

equations are the Reynolds stresses and assumpt:lons about their behavior 

arE! turbulence models. 

Turbulence modeling has received much attention over the years. 

Most of the fundamental work in this area has been based on the imcom­

prE!ssible Navier-Stokes equations. HOwever, most flows of technological 

interest are compressible. For many years, models developed from the 

incompressible equations have been applied to compressible flows, in 

many cases with great success. At higher Mach numbers, existing turbu­

lence mode:ls become increasingly inadequate. As it is very difficult to 

make experimental measurements in these flows we do not know the reason 

for this failure. 

It is the purpose of this work to study what happens to the Rey­

nolds stresses at high Mach number and investigate how they can be 

modeled. ~ use direct simulation of the full, unaveraged, Navier­

Stokes equations to study this problem. Even with the power of a modern 

vec:tor computer we are limited to simple geometries and low Reynolds 

numbers. By simulating the full Navier-Stokes equations we have no 
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closure problem. ~ can introduce an averaging process on the simulated 

results and directly calculate the various turbulence terms. Simula­

tions such as these give us insight and guidance for constructing turbu­

lence models that will be of use in more complicated flows. 

In this work we perform simulations of compressible homogeneous 

turbulent shear flows on the ILLIAC IV computer and use the resulting 

flow fields as data bases. 

Our objectives are: 

1. To develop techniques for direct simulation of compressible 

homogeneous turbulent flows. 

2. 1b apply these techniques to a shear flow simulation on the 

ILLIAC IV. 

3. 1b develop a data base from these simulations. 

4. To study the Reynolds stresses and terms in the Reynolds 

stress equations searching for the effects of compressibil­

ity. 

5. To test turbulence models by comparing them with exact 

results computed from the data base. 

In the remainder of this chapter we discuss the origion of the 

Reynolds stress, the various types of averaging and the complications 

that arise in compressible flows. ~ describe previous attempts to 

understand compressible turbulence and further discuss the reasons that 

led us to a direct simulation. 

In chapter II we present the mathematical foundations of these 

simulations and select numerical method. 

In chapter III we show how the equations and the numerical methods 

are implemented in a computer code on a vector computer. ~ describe 

the testing of the computer codes and the time development of a typical 

simulation. 

In chapter IV we present resul ts • ~ first describe character-

ization of these simulations. Then we present the data base. t..e dis-

cuss the structure of the Reynolds stresses and then some of the terms 

in their dynamic equations. l..e evaluate several turbulence models and 

propose some improvements. 

Chapter V contains the conclusions. 
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1.:2 Averaging and the Origin of the Reynolds Stresses 

Solutions of the Navier-Stokes equations represent the flow of a 

Newtonian fluid. They are the governing equations for laminar and tur­

bulent flows at all speeds. As alluded to .earlier, structures in 

turbulent flows, at technologically interesting Reynolds numbers, con­

taIn too large a range of sizes for representation with current compu-

ters, 

Hlrt (1969) has shown that the number of mesh points in a simple, 

complete (no turbulence model), three-dimensional simulation scales on a 

Reynolds number formed from the turbulence quantities, 

ex: = (1.2.1) 

where q is a turbulent. vleocity scale, L is a turbulent length 

scale, and v is 
') 

the kinematic viscosity. N is the requred number of 

me8h points in one direction. F'or large ReL , N3 is beyond current 

storage capacity. This necessitates that a smoothing or averaging be 

applied to reduce this range in length scales so that we may stay within 

thE? resolution capacity of modern computers. This averaging is normally 

applied directly to the Navier-Stokes equations. Consequently, an 

aVE~raged form of these equations, including a turbulence model, is 

usually solved. 

We wt'ite the full Navier-Stokes equations using tensor notation: 

Conservation of Mass 

P t + (pu i ) i , , o (1.2.2) 

Conservation of Momentum 

= (1.2.3) 

Conservati.on of Energy 

(1.2.4) 
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where 

pe = (1.2.5 ) 

is the sum of the internal and kinetic energies per unit volume. l\e 

have used ~ for the internal energy per unit mass because the standard 

symbol u is used for velocity. 

= (1.2.6) 

is the viscous stress tensor, and 

= - KT •• ,JJ (1.2.7) 

is the heat flux vector. The pressure P is rela ted to ~ and p 

through an equation of state, P = f(~,p), in our case the perfect gas 

law with constant specific heats. ~ divide the variables into mean and 

fluctuating components, 

p = p + p' = u
i 

+ u' . 
i ' 

e e + e' P = P + p' 

(1.2.8) 

and apply Reynolds averaging to equations (1.2.2)-(1.2.7). The averag­

ing operator is as yet unspecified, but has the property that u~ = O. 

l-Citing the momentum equation only and indicating the average with a 

bar, 
(PUi ) t + (p'u

i
') + (puiu.) j +P 

, ,t J"t 

(1.2.9) 

Reynolds Stress 

we see the appearance of additional terms, the Reynolds stresses. These 

terms increase the number of variables in the problem and require addi­

tional equations if we are to have a complete set. The term with the 

time-derivative now appears as two terms; the second term must also be 

4 



modeled. Seeking additional equations, we can form equations for the 

Reynolds stresses, but unfortunately we find the appearance of yet 

higher-order correlations in these equations. This process of forming 

equations for these higher-order correlations is hopeless, because we 

can never complete the set. we must introduce a model for the Reynolds 

stresses that relates them to the mean-flow variables. 

A standard simplification is to assume that the flow has constant 

density and is therefore incompressible 

stresses in Eq. (1.2.9) then reduce to 

d,erivative term disappears. Favre (1965) 

(U. i = 0). 
1., 

The Reynolds 

uIuj ,and the second time'· 

introduced a variation of the 

averaging procedure that simplified the appearance of the Reynolds 

stresses in the compressible flow. He multiplied the velocity and 

e:nergy by the density and averaged this product to form "mass-weighted" 

viuiables. 

u" 
i 

(1.2.10) = 
P 

lhis averaging has the property PUt = O. Applying this defini tion to 

Eqs. (1.2.2) through (1.2.7), we find that the appearance of the Rey·· 

nolds stresses has been simplified and looks qui te similar to the incom·· 

pressible stress. 

-P u.'u'. +u p'u' +u-p'U' - p'u'u' 
1. J j i i j i j 

+ -p.....--n-u
i 

u
j 

(1.2.11) 

Reynolds-averaged Favre-averaged 

Thle simplification is in appearance alone and has nothing to do with the 

physics. It is the form that most modern compressible flow simulations 

use. we shall show that Reynolds- and Favre-averaging are identical in 

the homogeneous flows that we simulate, and that our conclusions apply 

to either type. 

Favre-averaging of the Navier-Stokes equations is thoroughly 

treated in Rubesin and Rose (1973), to which the reader is referred for 

a complete discussion. 
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1.3 A Short History 

Early studies of compressible turbulence applied decompositions to 

the flow variables and studied their interaction. Kovasznay (1953) and 

Chu and Kovasznay (1958) proposed the idea of "modes." They derived 

equations for the vorticity mode, corresponding to convective and vorti­

cal motions, and for the pressure (acoustic) and entropy (temperature) 

modes. They analytically studied interactions among these modes, but 

were limi ted to low turbulence levels by their analytic techniques. 

They concluded that these interactions were second-order and therefore 

quite small at low- turbulence levels. Moyal (1952) concluded the same 

in his analysis. IE divided the kinetic energy spectra into "eddy 

turbulence" and "random noise" parts. IE did this by Fourier­

transforming the velocity vector and decomposing it into vectors that 

are, respectively, perpendicular and parallel to the wave-number 

vector. His analysis, like that of alU and Kovasznay, was limited to 

low turbulence levels and therefore not applicable in technologically 

useful flows. 

Wa recall this work because we are now able to perform these decom­

positions num.erically, without the restriction to low turbulence levels. 

Wa shall use Moyal's decomposition in the presentation of some results 

in Chapter IV. 

Because measurements in high-speed flows are so difficult, little 

is· known about the structure of the Reynolds stresses and their equa­

tions. Historically, simulators have used models derived from the in­

compressible Navier-Stokes. equations. Morkovin (1962) used the limited 

data available at the time to show that the Reynolds stresses in super­

sonic boundary layers were structurally similar to incompressible flow. 

Laufer (1969) used Favre averages to come to the same conclusion. Over 

the years, application of incompressible models has met with great suc­

cess in boundary layers. HOwever, limits on this applicability began to 

be recognized. Bradshaw (1977) quantified Morkovin' s hypothesis. He 

agreed with Morkovin that incompressible models should not be applied in 

bouridary layers with external Mach numbers greater than five, nor in 

boundary layers with large pressure gradients (shock-boundary layer in­

teraction). Bradshaw also concluded that these models are inappropriate 
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in. free-stream layers with Mach numbers greater than 1.5; however, no 

physical reason is given. A general conclusion of the Free Shear Layers 

Conference (Morkovin et al. (1972» was that existing turbulence models 

were inadequate for these flows. None was able to predict the well­

known decrease in mixing-layer spreading rate with increased Mach number 

without introducing empirical data. 

Thesle failures have variously been attributed to variations in den­

sity or ,some unspecified "compressibility effect." Brown and Roshko 

(1974) performed a low-speed, variable density, mixing layer experiment. 

Their flmv- was virtually incompressible, but they controlled the density 

ratio of the two streams by using gases of different molecular weights. 

Th,ey found no evidence of spreading rate variation with density ratios 

appropriate for single-component, high-speed mixing' layers and concluded 

that spreading-rate variation must be a "compressibility effect." Dh 

(1974) simulated a two-dimensional, high-speed mixing layer. He pro-

posed a kinetic-energy equation model that provided for a nonzero 

pr,essure-ciilatation interaction. He was able to correctly predict the 

tnmd of the spreading, leading us to suspect that there are unrecog­

ni:2:ed physical phenomena that must be modeled. The questions that re­

ma:in unanswered for lack of experimental data are, "Wtat changes occur 

in the Reynolds stresses and their equations in a compressible flow, and 

how' should they be modeled?" In the next section, we discuss how we 

approached these questions. 

1 .ll The Approach of This l-brk 

Much progress in turbulence research has come from the study of 

homogeneous flows. These are flows that extend to infinity in all di­

rections and are statistically similar everywhere in space. Presumably 

a homogeneous flow is an, approximation to a piece of an inhomogeneous 

fl()w. It allows us to separate and distinguish competing processes in 

thE! development of the turbulence and is also amenable to analytic 

trE!atment (Batchelor, 1953). 

Several homogeneous turbulent-flow experiments have been performed 

(box-turbulence: Comte-Bellot and Corrsin, 1971, and Bennett, 1976; 

shear flo'w: Rose, 1966, 'Olampagne et a1., 1970, and Harris et a1., 
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1977); plane strain: 'fucker and Reynolds, 1975) to obtain experimental 

measurements of turbulence quantities. 'All of these experiments were 

performed in steady-flow wind tunnels and substituted spatial (down-

stream) development for time development. Consequently, they are ap-

proximations to homogeneous flow and are slightly inhomogeneous in the 

downstream direction. Analysis by Harris (1977) showed that this shear 

flow has about the maximum mean-velocity gradient possible while still 

maintaining an approximation to homogeneity. The downstream distance in 

which a significant change in turbulence quantities occurs must be 

larger than the largest turbulent length scales in the flow. This can­

not be satisfied at high speeds with large velocity gradients. There­

fore, there are rto high Mach number homogeneous flow experiments. 

HOwever, we would still like to study a compressible homogeneous flow. 

This is where the work must start if we are to understand turbulence in 

a compressible flow. 

" In the last few years, the advent of very large computers has pro-

vided the capability of doing three":'dimensional simulations of flows 

with simple geometries (Deardorff, 1970; Orszag, 1971; Clark, 1977; 

Mansour, 1978; Moin, 1978; and Pulliam, 1979). The majority of turbu­

lent flow simulations have solved averaged or filtered equations and 

incorporated a turbulence model. 

Because of the absence of experimental measurements of compressible 

turbulence, we use a large vector computer as a numerical wind tunnel 

and perform numerical experiments. This approach was pioneered by Clark 

(1977). He simulated box turbulence with the unaveraged, incompressible 

Navier-Stokes equations and therefore did not need a model to close his 

equations. In contrast to experiment, his simulations (and all homogen­

eous flow simulations) developed in time and was therefore a closer ap-

proximation to the ideal. 

models against the "exact" 

fields. 

He compared the performance of turbulence 

terms as calculated from his simulated flow 

In. this work, we simulate a compressible, homogeneous, turbulent 

shear flow by solving a transformed version of the full Navier-Stokes 

equations «1.2.2) through (1.2.7». A shear flow is the simplest 

turbulent flow with a continuous source of turbulent kinetic-energy 
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production. At low Mach number we may also compare with the shear flow 

experiments listed above. 

The mean flow is pictured in Fig. 1.1. Geometrically, it is like a 

deck of playing cards, with each card sliding on top of the one below 

it. 

1.5 Numerical· Requi'rements 

Ie cannot simulate a homogeneous flow with an infinite domain. 

Like an experimentalist, we choose a portion of the flow and impose 

boundary conditions. Ie must choose a large enough portion of the flow 

that the turbulent length sca1E~s are much smaller than our domain, or 

the boundary conditions will interfere. Ideally, we would like to im­

pose periodic boundary conditions, i.e., one side of our computational 

mesh is identical to the opposite side. These boundary conditions are 

essentially transparent to the simulation, if the turbulent length 

scales are small enough. However, inspection of Fig. 1.1 shows that the 

shear flow is not periodic. The mean velocity varies across a computa­

tional mesh. In <hapter II we shall introduce an analytic coordinate 

transformation on the Navier-Stokes equations that allows the equations 

to have periodic solutions. 

If we are to use the simulated flow fields as a data base, we must 

be sure of their accuracy. Ie require a highly accurate numerical 

method in both space and time. This requirement is also addressed in 

Chapter II, where we discuss the equations and the numerical method. 
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Chapter II 

EQUATIONS AND NUMERICAL METHOD 

In this chapter we discuss the coordinate transformation that we 

apply to the Navier-Stokes equations. l..e describe an alternate way of 

wrlting the momentum equations that ensures the numerical conservation 

of quantitie that are analytically conserved, and we justify the choice 

of a numerical method. 

2.1 The Linear Coordinate Transformation 

l..e apply a coordinate transformation to the Navier-Stokes equations 

thslt allows them to have periodi.c solutions. l..e then impose Periodic 

Boundary Conditions (PBCs) on the transformed equations and use Fourier 

methods for the spatial derivatives. 

Homogeneous flows extend to infinity in space. Obviously we cannot 

simulate the entire flow, nor is it necessary. l..e choose a portion of 

the! flow field and impose boundary cond'itions on the edge of this· do­

maln. Boundary conditions are a source of numerical uncertainty in any 

simulation. In simulations of a. homogeneous flow, we may reduce this 

uncertainty by applying PBCs after a suitable coordinate transformation. 

PBCs enforce all variables to be periodic on the domain. They are es­

sentially transparent to the simulation if the domain is significantly 

larger tha:n the largest turbulent length scales that naturally develop 

inside it. PBCs are desirable because they cIo not· introduce unknown 

effects into the flow. They are the least intrusive boundary conditions 

available for this geometry, and we would like to use them. 

Most homogeneous flows are not periodic (except isotropic flows), 

because th,e mean velocity is not periodic. This can be seen by dividing 

the variables into mean and fluctuating components. l..e do this in gen­

eral for all homogeneous flows with linear mean-velocity gradients, and 

then show how the derivation is made specific for homogeneous shear 

flows. l..e wri te : 
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p = = p = pI +p +F.x 
o J j 

(2.1.1) 

'where the mean parts of the density and pressure have both constant and 

linear gradient parts. Tensor ~j and vectors Ej and Fj represent 

the linear gradients of each variable. They are constants for our case 

but may be generalized to vary with time. For example, in the shear 

flow, 

-G 
s 
o 
o ~J (2.1.2) 

where S is the "shear rate," au/Oy. lie shall show that Ej and 

Fj must be zero when we introduce the coordinate transformation. 

If we introduce the definitions (2.1.1) into the conservation of 

mass equation (2.1.2), we immediately produce an equation with the coor­

dinates as coefficients. 

(2.1.3) 

= o 

Equation 2.1.3 will not allow periodic solutions, because the coordi­

nate, x j ' appears explicitly in the coefficients. Hence we are led to 

apply a coordinate transformation in order to eliminate these coeffici­

ents and to derive equations for the fluctuating (primed) quantities 

only. 

we define this transformation for the general case as 

Xl = 
i t l = t (2.1.4) 

where Bij relates the transformed corodinates to the Cartesian coor­

dinate. This idea originated with Rogallo (1979), who first applied it 

to the solution of an incompressible homogeneous shear flow. He substi­

tuted the decomposed field (2.1.1) and the transformation (2.1.4) into 
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the incompressible momentum equations and derived the conditions that 

allow the equations to have periodic solutions. t..e follow tre same 

reasoning for the full Navier-Stokes equations. The same procedure is 

followed for all the equations. ~ illustrate this for the mass equa­

tion only because the algebra is very messy. 

Inserting (2.1.1) and (2.1.4) into the Navier-Stokes equations 

(1.1.2)-(1.1.7) and writing the mass equation, the derivatives become 

a a 
aX

j 
+ \j~ 

(2.1.5 ) 
a a • a 
at + ---+ B jk Ck~ x~ ax"';" at' 

J 

where ~~ is the inverse of ~J/,. 

a '+B. a " A' , at" P -kj ax;' P u j - ~j jJl.C~kP - ~jkEmCmkUj 

- (Bjk + BjtAtk) Sax;' a!; p' - Em [Bjk~tCmj + '\j (Cmt ~~ uj 

+ AjnCn~Cmk + AjnCm~Cnk)] xi (2.1.6) 

~ ha.ve isolated all the coordinate coefficients in the last two 

terms. Ideally, we would choose some Bjk and the last two terms in 

(3.1.6) would be zero. However, there is no that will zero the 

cOE!fficient in the last term. Therefore, Em must be identically zero, 

i .€:., there can be no mean gradient of density. 

The second-to-last term has a coefficient that we may set equal to 

zero, resulting in a set of coupled ordinary differential equations: 

= 0 (2.1. 7) 

Solution of these equations, subject to the initial conditions, 

= (Cartesian mesh) (2.1.8) 

defines the transform for a specific mean velocity gradient tensor, 

Atji • 
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As stated, the same procedure is followed to transform the momentum 

equations. Equation (2.1.7) also results independently from the momen­

tum equations. 

lIDen applying the procedure to the total energy equation (1.2.4), 

we were unable to zero all of the coordinate coefficients. The reason 

can be seen by inspecting the definition of the total energy, Eq. 

(1.2.5), the total energy is the sum of the kinetic and internal ener­

gies and is quadratic in (2.1.1) and the velocity. This leaves some 

terms in (1.2.4) quadratic and some cubic when Eqs. (2.1.5) are inser­

ted~ A linear coordinate transformation cannot eliminate the coordinate 

coefficients from all these terms at the same time. 

l>.e solve this problem by subtracting the kinetic energy equation 

from (1.2.4), leaving only the thermal energy equation. l>.e may do this 

and retain the complete set of equations, because the kinetic energy 

equation is not independent of the mass and momentum equations. 

Taking the time derivative of (1.2.5), we find 

a 
at pe (2.1.9) 

which shows that the total energy equation is the sum of the internal 

energy P/(y-l) and the kinetic energy per unit volume. W:! subtract 

the kinetic energy equation and multiply by (y-1) to form the equation 

for the pressure before we apply the transformation. 

= (y-1) Ui,j Tij - (y-1) q ,jj (2.1.10) 

The total energy is analytically conserved. By solving the thermal 

energy equation (2.1.10), we give up guaranteed numerical conservation 

of total energy, but we shall show later how thfs is regained. 

Equation (2.1.10) can now be transformed in the same manner as the 

mass and momentum equations. Without presenting the complicated alge­

bra, we find that Fj must be identically zero, for the same reason 

as found with the density. There can be no mean gradient in the pres­

sure. This is in contrast to the incompressible case, where the mean 

pressure gradient is arbitrary. This is due to the fact that the 
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prel3sure is a true flow variable and not the result of a kinematic con­

straint, as: it is in incompressible flow. 

TIlis derivation is general for an arbitrary mean velocity gradient, 

~j' Taking the ~j corresponding to the shear flow, Eq. (2.1.2), and 

solving for the transform tensor, Bij , in (2.1.7) subject to the 

initial condition (2.1.8), we find 

U 
-St 

~J Bi/t) = 1 

0 

(2.1.11) 

or 
x' x - St y 

y' = y (2.1.12) 

z' = z 

TIlis is the coordinate system for the homogeneous shear flow that allows 

the equati()ns for the fluctuating quantities to have periodic solutions. 

It is effectively "glued" on top of the mean velocity of Fig. 1.1, and 

sheiars along with it. 

Beforl~ presenting the final form of the equations that are used in 

the simulation, we show an alternative form of the momentum equations 

(1.2.3) that regains the total energy conservation lost by solving the 

thermal energy equation. TIlis form will also guarantee that kinetic 

energy is not being artificially produced. 

2.2 The Conservation Properties 

From previous experience (Mollnsour, 1978), it is known that arti .... 

ficia1 generation of conserved flow-field quantities by the numerical 

method can destroy the validity of a simulation. For example, in in­

compressible flows, in the absence of viscosity and turbulent kinetic 

energy production, and, with PBCs, it can be proven that the total mass, 

momentum, and kinetic energy remain constant. Numerical simulations do 

not always ensure this. ~ak (1975) and Shaanan (1975) used a modified 

(but exact) form of the convective terms in the momentum equations, in 

order to ensure kinetic energy conservation under these conditions. 

14 



In a compressible flow under the same conditions (periodic boundary 

conditions, no turbulent kinetic energy production, zero viscosity), 

kinetic energy conservation does not hold. There is a physical mecha­

nism for exchange of energy between the kinetic energy and the thermal 

energy through a pressure-volume interaction. 

Artificial production or dissipation by means of finite-difference 

approximations to the convective terms is still possible and must be 

eliminated for a valid simulation. l..e shall again rewrite the convec­

tive terms in the momentum equations in a different but equivalent form 

that not only prevents artificial kinetic energy production but regains 

the total energy conservation that we lost earlier. 

l..e must ensure that the numerical method that we shall use is in­

capable of artificially creating kinetic energy. To show this, we shall 

write the kinetic energy equation and integrate it over the periodic 

domain. 

Although we do not carry a kinetic energy equation in the simula­

tion, its effect is implicit. The equation is formed from the mass and 

momentum equations. Therefore, what we do with these equations numeric­

ally is reflected in the kinetic energy behavior. Applying the chain 

rule to the time derivative of the kinetic energy shows 

where we see the appearance of 

equations. 

a 
and at P 

(2.2.1) 

for which we solve 

Integrating the kinetic energy equation over the domain, we find 

(with zero viscosity) 

fo a uiUi + ;: a + .£ a + at P -2- dx + ui aX
j 

puiu j dx + ui aX
i 

P dx -

(2.2.2) 

-10 
u:i. ui . ~ + 

0 -2- aX
j 

pU j dx = 
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Because of the periodic domain, the integral of all quantities that 

appear totally inside a spatial derivative (divergence quantities) are 

zero. In addition, all terms that are evaluated on the boundaries, such 

as the constants of integration are also zero for the same reason. This 

is true both analytically and numerically, so those terms are not writ­

ten here. 

Integration by parts shows that 

r a + 1 UiUi a + J
D 

Ui aX
j 

pUi Uj dx -- D -2- ai'j pujdx = 0 (2.2.3) 

so that (2.2.2) becomes 

(2.2.4 ) 

ThE!refore, the only net contribution to the time development of the 

kinetic energy is the pressure term in (2.2.4). Th~ convective terms 

have no ne,t effect. te need this behavior in the numerical simulation. 

Integrations are carried out numerically by summations. Mansour 

(1978) h813 shown that summation by parts holds for a wide variety of 

nunlerical methods. If we rewri te the convective terms as 

(2.2.5 ) 

thEm summl:Ltion by parts is valid and (2.2.3) is satisfied numerically. 

te then, numerically, have the correct behavior for the kinetic energy 

that was d.escribed analytically in Eq. (2.2.4). 

As a side benefit, we have regained the conservation of total 

enE!rgy. Recall from (1.2.5) that the total energy is the sum of the 

internal energy, (P/(y-1», and the kinetic energy, P(uiui/2). 

ThE!refore, the total energy behavior is determined by how we treat the 

mass, momEmtum, and pressure equations. Writing the time derivative of 

thE! total energy and integrating over the domain, we have 

[
a + 
-- pe dx 

D at = (2.2.6) 
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we have just discussed the numerical behavior of the last term. It 

is represented by (2.2.4). The second term is obtained by integrating 

the pressure equation (2.1.10), resulting in 

1 1 a 
D (y-l) at P 

+ y 1 aUi + 1 r a 
dx + (y-l) D P aX

i 
dx + (y-1) J

D 
ui aX

i 
P d;t 

= -- T d~ - --j d~ j aUi In aq 
D aXj ij D aX j 

(2.2.7) 

Upon adding (2.1.10) with the appropriate viscous terms to (2.2.7), 

we find that the time derivative of the integrated total energy is 

1 a + r [ (ap y ) aUi 1 
D at pe dx + J

D 
ui aX

i 
+ (y-l) P aX

i 
+ (y-1) 

Since numerical 

and therefore, 

1 a aU i + 

= D Ui aX
j 

Tij + aX
j 

Tij dx 

summation by parts holds, we find that 

~ (Y~1) ap au 
ui aX

i 
+ 

p_i 
aXi 

a aUi In ui ax. Tij + -a- Ti · 
J 

Xj J 

numerically, 

a + at pe dx 

d~ = 0 

d;t = 0 

o 

(2.2.8) 

(2.2.9) 

(2-2-10) 

as it is analytically, so that we have regained total energy conserva­

tion. 

This modification (2.2.5) to the equations is completely indepen­

dent of the coordinate transformation. we use both ideas in conjunction 

in the simulations. 
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2.3' Summary of the Equations 

The previous two sections describing the coordinate transformation 

and the conservation properties provide the basis for the siml,llation. 

Since virtually all tensor equations that we shall discuss after this 

point have been transformed by the method of Section 2.1, we make the 

following definition. Recall from (2.1.5) that 

a + 
~ 

J 

(2.3.1) 

loe shall absorb the ~j into the derivative definition and drop the 
a pri.mes. Mter this point, when we write ""-="""" the transform is implicit 

aX
i in the derivative. For example, :Ln the shear flow 

a 
i = 1 

di"l 
a a a 

i 2 aX
i 

+ ax
2
' St ax::- = 

xl 

a 
i = 3 aX3" 

Thls notation will be used unless specified otherwise. 

definition in mind, we present the equations as simulated. 

Mass Equation 

Momentum Equations 

+ P i , = 

Pressure Equatio~ 
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(2.3.2) 

Keeping this 

(2.3.3) 

(2.3.4) 

(2.3.5) 



where 

S 
au = ay (mean velocity gradient) 

= II [U i , j + u j , i - i 0 i j uk, kJ (2.3.6) 

... - K T OJ ,] 
(2.3.7) 

It should be emphasized that numerical considerations influenced 

the form that these equations (2.3.3) to (2.3.7) take, but they are in 

analytic form, with no approximat~ons. The numerical method used to 

advance the flow fields in time is discussed in the next section. 

\ 

2.4 Desire for lH.gh Time and Spatial Accuracy 

These simulations are time-dependent and three-dimensional. It is 

necessary to choose numerical methods to compute the spatial derivatives 

and to follow the development in time. As stated in Section 1.5, we 

desire as accurate a simulation as possible, if the flow fields are to 

be used as a data base. 

Before discussing the numerical methods, we must discuss the con­

cept of stiffness. The one-dimensional Euler or inviscid Navier-Stokes 

equations serve to illustrate this property. The equations are 

a + a + a = 0 TIP u ax p Pax u (2.4.1) 

a a 1 a . 0 TI u + uaxu+-axP = 
x P x 

(2.4.2) 

a a a 0 rtP + yP ax u + u ax P = (2.4.3) 

Eqs. (2.·4.1)-(2.4.3) can be rewritten in vector form 

~Q+J~Q = 0 at - ax (2.4.4) 

where 
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Cl = L~ 
p 

p~lJ + 
(2.4.5) Q = .J u 

yp 

A simHarity transformation exists (Warming, 1975 ) that converts the 

Jacobian matrix, J to a diagonal form. Let: 

(2.4.6) 

whe:re A is a diagonal matrix containing the eigenvalues of J and 

P :Ls the eorresponding eigenvector matrix. It is found that: 

o 
A u+c 

o 

yp 
p = 2 

c (2.4.7) 

where u is the convective speed and c the speed of sound. This 

diagonalization is used on the nonlinear equation (2.4.4) only to show 

the various speeds at which information propagates. Wi.th a nonlinear 

eqml.tion it is not useful for thE! solution pro(~ess, because the eigen­

vector matrix P varies with time. 

There are several characteristic speeds at which information propa­

gatlas: the convective and acoustic speeds and their sum and difference. 

In homogeneous turbulent f.lows, the fluctuating velocity, i.e., the 

convective speed u, is usually much less than the acoustic speed c. 

It is beHeved that the flow develops at a rate corresponding to the 

convective speed. However, in explicit numerical methods the size of 

the allowable time step is limited by events that develop at a rate 

correspondllng to the acoustic speed. 

ical stabili ty requires a very small 

timla steps) so the cost will be hi.gh. 

Hence, with these methods, numer­

time step (and consequently many 

This c.an be illustrated by slolving the linearized form of (2.4.5) 

where 

tions. 

J is made constant by linearizing about the initial condi.,. 

l\e subject the solution to periodic boundary conditions and a 

gi vlen ini t:Lal condi tion Qo • 

Assum:lng that the equations have periodic solutions, we expand the 

solution in spatial Fourier transforms. Since this is a linear problem, 
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all Fourier modes behave independently. Therefore, for simplicity we 

choose a single representative mode associated with wave number k. 

Fourier transforming the linearized version of (2.5.5) results in 

P~:] m (2.4.9) 

which is a coupled set of linear ordinary differential equations with 

constant coefficients. 

~ solve the system (2-5-9) by diagonalizing it in the fashion of 

(2-4-6). 

p-1 ~ Q + p-1 J p p-1 ik Q 
-0 at 0 0 0 0 

= a it + ik A it at 0 
(2.4.10) 

resulting in an uncoupled set of ordinary differential equations. The 

exponential solutions of (2-5-10) are subject to the initial conditions 

+ 
R 

o 
= 

and the solution is transformed back by 

resulting in 

Q = e 
iu kt o 

+ 
Q = + 

P R 
o 

u 

l Y-1 + ..!. cos (c kt) - i ~ sin(c kt) J 
Po Y Y 0 - c 0 

o 
u 1 

c l~ cos c kt - i-sin c kt») o coy 0 
o yu 

p l cos(c kt) - i ~ sin(c kt) J 
o 0 c 0 

(2.4.11) 

(2.4.12) 

(2.4.13) 

It can be seen that information propagates at different speeds in­

volving Uo and co. If a simulation is to be accurate, it must 

properly represent all of those propagation speeds. The stiffness of 

the systems (2.4.4) and (2.4.9) are characterized by the wide range in 
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magnitude amongst the eigenvalues of II. requiring very small time steps 

for numerical accuracy. This can be a severe limitation in that the 

speed of sound Co can be many times the convective speed uo • To see 

a significant development in the flow could take a tremendous amount of 

processor time. 

2-5. Numerical Method Olaracterization 

we have spoken of explicit methods and their restrictive stability 

criteria in compressible flows. In recent years implicit Jethods have 

been developed (Wlrming & Beam, 1978; :8riley & MacDonald, 1973) into 

very sophisticated algorithms that can greatly exceed the restrictions 

on time step required by expicit methods. 

Naturally, we are interested in such methods, as they could sig­

nificantly reduce the computer time required. Fk>wever, some procedure 

for comparing the behavior of the various methods has to be chosen. we 
choose the, von Neumann analysis, (Lomax, 1967). This method is illus­

trated by application to two very simple numerical methods, one expli­

cit: and one implicit. 

we choose a linear test equation, the linear form of the viscous 

Burger's equation. 

a au 
at U + a ax = (2.5.1) 

toe again impose periodic boundary conditions and Fourier transform the 

equation in space: 

The~ solution is: 

u = 

At t = nh, the solution is: 

"n 
u = 

u 
o 
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Equation (2.5.4) shows that the solution at time (n+1) is related 

to time (n) by the constant factor: 

a = -A 
e 1 - A +} A2 _}),.3 + ... (2.5.5) 

The factor a holds the information about how the solution devel­

ops in time and space. All numerical methods produce an approximation 

to this factor, and their performance can be evaluated and compared by 

how well they approximate this exact linear solution. 

The spatial derivative information is represented by the wave num­

ber, k. All difference methods produce an approximation to k, so we 

may include their effect on the numerical solution by introducing the 

"modified wave number" k' and using it to replace the exact k in the 

following analysis. W! show how k' is related to k as follows. 

For periodic solutions, the spatial derivatives can be represented 

in a general way by a discrete Fourier transform. Let 

+(N/2)-1 

= 1: 
n=-(N/2) 

ik x. 
f(k) n J 

n 
(2.5.6) 

Take the derivative of (2.5.6) and equate it to, for example, a central 

finite difference. 

(+N/2)-1 
a 
~ f(x.) 
aX J 1: = 

n=(-N/2 ) 

f(xj+1) - f(x j _1) 

211x 

(N/2)-1 

l: 
n=(-N/2) 

(N/2)+1 

1: 
n=(-N/2) 

,. 
f(k ) e n 

ik f(k ) 
n n 

iknx j 
ik llx 

n e - e 
211x 

(N/2)+l i sin-k llx ,. iknxj 1: n f(k ) = Ax e n 
n=(-N/2) 
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-ik llx 
n 

(2.5.8) 



Comparison of (2.5.7) and (2.5.8) shows them to be identical if 

k = n 

sin k /:"x 
n 

/:"x = k' 
n 

(2.5.9) 

Hen.ce the concept of a modified wave number as used by Mansour (1978). 

The modified wave numbers for other difference schemes can be derived in 

a similar manner. Therefore, th4~ characteristics of each type of dif­

ferencing scheme can be analyzed :in a general sense by using an equation 

like (2.5.10) to represent a derivative. 

a 
" f(x.) 
oX J = 

(N/2 )-1 
~-I ik' f(k ) 
.:....J n n 

n=(--N/2 ) 

(2.5.10) 

we can illustrate the behavior of some finite-difference schemes by 

plotting the modified wave number, k', against the analytic wave num­

ber, k. This is done in Fig. 2-1, where we show the behavior for 

sec:ond- and fourth-order central approximations to the first derivative. 

l-e also show the pseudo-spectral derivative behavior where discrete 

Fourier transforms are used directly, to calculate the derivative. 

A perfect numerical derivative is represented by a 45 0 line on Fig. 

2.1.. It can be seen that the behavior of the fourth-order method is 

better than that of the second order method, but both methods do not 

represent the high wave numbers or the small-scale structure well. The 

ps€!udo-spectral method is exact up to the maximlnn wave number represent­

able on the mesh. Higher wave numbers in the solution are misrepresen­

ted as lower wave numbers. They masquerade as contributions to resolv­

able wave numbers; hence they are called aliased. With the pseudo­

spE!ctral method, care must be taken not to allow information into wave 

numbers greater than this maximum, or the solution accuracy will deter-

iorate and instability can result. The pseudospectral method is far 

more accurate than the finite-difference methods, but is strictly lim­

itE!d to periodic flows. These derivatives are the most suitable for our 

siUlUlation.s • 
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Analysis for a Simple Explicit Method: Euler 

The Euler explicit method represents the time advance. 

An+l 
u 

Using Eqs. (2.5.1), (2.5.2), and (2.5.11), 

An+l 
u = 

= 

(2.5.11) 

= 1 - A (2.5.12) 

It can be seen that (2.5.12) approximates (2.5.5) only to first o'rder 

in A --hence its classification as a first-order method. Other mea­

sures of the method's behavior occur in dissipation error and phase 

error, as illustrated below. 

Let 

C = kah v = (2.5.13) 

C and V are the Fourier space equivalents of, respectively, the Cou­

rant number and the viscous stability number; they depend on both the 

time step h and the modified wave number k'. 

In Fig. 2.2, V has been set equal to zero. The two curves show 

the behavior of a and aEE as the Courant number C increases. The 

analytic solution a neither decays nor grows in magnitude, but the 

Euler solution grows monotonically with time. It is unconditionally 

unstable for V = O. The argument of aEE can be at most n/2, but 

the argument of increases indefinitely. Phase information is 

increasingly inaccurate as C increases. 

Figure 2.3 illustrates the behavior of a and aEE when C = O. 

In this case the solution should simply decay. It can be seen that 

aEE follows a fairly closely up to about V = 0.3 and then diverges, 

and its magnitude finally becomes greater than 1 at V = 2.0, after 

which the method is unstable. 
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Dissipation error (actually, antidissipation or growth) is evident 

in Fig. 2.2 in that the magnitude of aEE does not remain 1.0, and in 

Fig. 2.3 in that the viscous dissipation is inaccurately represented for 

higher visicous stability numbers. For general X = (iC + V), these 

effects work "in combination. 

Simple Implicit Method: Crank'-Nicholso~ 

te OE!xt present a simple implicit method. Certain advantages of 

implicit methods are shown by thE! Crank-Nicholson method. It will also 

be shown why methods of this type are insufficient for accurate time­

dependent simulations when used with time step greater than the explicit 

stability condition. 

The Crank-Nicholson method ~md implicit methods in general use the 

value of the unknown time derivative at the new time step. This in­

volves solution of coupled equations which must be simultaneously 

solved, hence the designation "implicit." Crank-Nicholson is represen­

ted by: 

= (2.5.14) 

Analysis similar to (2.5.4) and (2.5.12) produces 

a = 
CN 

which approximates 

phase angle e of 

when C = o. 

With V = 0, 

(1 - !. X) 
__ 2"...-_ = 1 - X + .!. X2 - .!. X3 + ••. (2.5.15) 
(1 + i X) 2 4 

(2.5.4) to second order in X. Figure 2.4 shows the 

a CN when V = 0 and l~ig. 2.5 the magnitude of 

the magnitudes of a and a CN are identically 

equal to 1.0, for all values of C. In other words, Crank-Nicholson 

produces neutrally s table solutions for any size time step. Fig. 2.4 

plots the arguments of a and aCN" It can be seen that, while Crank-' 

Nicholson solutions are stable for Courant numbers greater than 1.0, 

their accuracy as represented loy phase information can be very poor 

(likewise for other implicit methods). 
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Figure 2.5 shows that for C = 0 the solution can be alternately 

positive and negative at large viscous stability numbers because <:tCN 

becomes negative. t-hile this behavior is stable, it is an incorrect 

representation of the true behavior of the solution (2.5.4). 

\..e can apply this type of reasoning to more complicated sets of 

test equations such as (2.4.9) that have several propagation speeds. 

One finds that, if all motions in the problem are to be simulated accu­

rately, the Courant number based on the fastest propagation speed must 

be of the order of magnitude of 1.0 or less. Also, the viscous stabil­

ity number must be 1.0 or less. 

Since implicit methods require more work per time step, their re­

striction to small Courant and viscous stability numbers makes them 

inefficient. \..e therefore abandon implicit methods for our time-accurate 

simulations. 

Some work was performed in incorporating the previously discussed 

conservation properties into an implicit method. Additional problems 

were encountered in designing an efficient implicit algorithm that in­

corporated highly accurate spatial derivatives. As stated above, the 

implicit methods are not suitable for highly accurate time-dependent 

simulations. They lack sufficient accuracy for a time-accurate solu-

tion. They may find use in simulations of variable density, low Mach 

number flow, where the acoustic speeds are unimportant in the solution, 

but are troublesome numerically. 

2.6 Advanced Explicit Methods 

There are two fully explicit methods that were finally considered. 

MacCormack's (1969) method was analyzed and programmed into a three­

dimensional code to run on a CDC 7600. The final method of choice, 

however, was a combination of the classical fourth-order Runge-Kutta 

with spatial derivatives based on fast Fourier transforms, the pseudo­

spectral method. 

MacCormack's method is well known, having been successfully used in 

many compressible flow codes over the last decade. It is a modification 

of a Lax-\..endroff scheme that incorporates forward and backward differ-
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ences alternately on the predictor and corrector steps. Its formal 

ac:curacy is second order in both space and time. The reader is referred 

to the original paper, in which the method is laid out and estimates 

made of its accuracy and stability. 

For purposes of comparison, we shall apply the analysis developed 

i111 the previous section to compare these two methods. 

In most numerical algorithms for partial differential equations, 

the method for representing the spatial derivatives can be discussed 

separately from the method for the time advance. To a limited extent, 

one is free to choose combinations. MacCormack's method, however, is a 

specific combination of the two and derives its unique qualities from 

this combination of methods. 

Following the analysis in Section 2.5, the computational root of 

Mac Cormack's method is 

Ct = 

where 

V' = 

all1d 

k' 

1 - V' - ! C' 2 + ! V' 2 + i( e" V' - e" ) 
2 2 

C:' 

b.x 
sin k "2-

b.x/2 

= hak' 

k" = 

e" = 

sin kAx 
b.x 

hak" 

(2.6.1) 

(2.6.2) 

(2.6.3) 

The forward and backward differences result in the two modified 

w,ave numbers of (2.6.3). These wave numbers correspond to central 

differenc:e approximations to the first derivative that are taken over 

mesh spalC.ings of b.x/2 and b.x, respectively. The highly dissipative 

behavior of this method results from the combination of modified wave 

numbers (2.6.3). 

Figure 2.6 shows the computational root for zero viscosity (V' = 
0). Both time ,and spatial behavior are represented. Keeping in mind 

that the exact solution lies on the unit circle, it can be seen that for 

high wave numbers (kA appr()aching 1T) or large time steps, the 
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dissipation is severe without the inclusion of viscous terms. If an 

initial flow field containing iill resolvable length scales is advanced 

by this method, the smallest scales (highest wave numbers) will swiftly 

disappear through the act:i.on ot the numerical method. 

It was found in an isotropic homogeneous flow that this numerical 

viscosity was sufficient to maintain a stable calculation at a Taylor 

micro scale Reynolds number of several thousand. At the relatively small 

mesh size of 16 x 16 x 16 = 163 , this is unphysical. In addition, 

statistics that have to do with high wavenumbers, such as velocity de­

rivative skewness, were incorrect in comparison with e~periment. 

Since an accurate method for all resolvable wave numbers is 

desi~ed, this method must be abandoned for our purposes. 

2.7 Method of Choice 

The numerical method that we have chosen has a combin.ation of the 

highest time accuracy that can conveniently be implemented on the ILLIAC 
! < 

IV and the highest spatial accuracy. we shall use fourth-order Runge-

Kutta for the time advance and the pseudo-spectral method for the spa­

tial derivatives. For completeness we show both. 

Fourth-order Runge-Kutta is written: 

* n + At a n u = u 2at u 

** n + At a * u = u rat u 
(2.7.1) 

II = n a ** u + At at u *** 

n+1 
u = n + A t [a n + 2 a * + 2 a. ** + a ***J 

u 6 at U a-t u at u at U 

and the pseudo-~pectral spatial derivatives directly implement 

(+N/2)-1 

~ = ik f(k ) n·· n 
(2.7.2) 

n=(""N/2) 

by means of the Fast Fourier Transform algorithm. 
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The computational root for pseudo-spectral fourth-order Runge Kutta 

is, by the kind of analysis used above. 

(2.7.3) 

For zero viscosity (v = 0), this root is depicted in Fig. 2.7. 

For Courant numbers less than one, the method is very accurate, since it 

closely follows the analytic root. In using this method, the time step 

is chosen such that the Courant number associated with the maximum wave 

number is one. Courant numbers associated with the lower wave numbers 

are then less than one, and the computational root more accurately fol­

lows the analytic root for these larger scale motions. 

Figure 2.8 shows behavior of the viscous terms alone (C = 0). In 

this combination of methods, the computational root accurately approxi­

mates the analytic root up to a viscous stability number of one. 

The combination of fourth-order Runge-Kutta and pseudo-spectral 

spatial derivatives requires a large number of operations (and conse­

quently CPU time) per time step. Additionally, it requires four levels 

of storage in the computer for intermediate predicted steps, placing a 

burden on the memory resources of the machine for large meshes. This 

compares to two levels of storage for second-order methods. However, we 

are able to use the method at a Courant number of one, in contrast to 

many common second-order explieit methods that must have Courant numbers 

much less than one. Although the method requires more CPU time per time 

step, :Lts time steps are correspondingly longer than any suitable 

second-order method. 

We are still limited by aecuracy constraints to a Courant number of 

one. '1'0 perform a complete simulation in a compressible flow with the 

large mesh system that we wish to use will absorb an incredible amount 

of proc,essor time. In the next chapter we show how this method is used 

to solve Eqs. (2.3.3)-(2.3.7) in a code for the ILLIAC-IV computer at 

NASA-Ames Research Center. ~ shall discuss how the code is constructed 

and tested and show the amount of CPU time that it absorbs. 
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Chapter III 

PROGRAM DEVELOPMENT, AND TESTING ON THE ILLIAC IV 

The construction and testing of the computer code are described in 

this chapter, as well as the characterization of a typical run. 

3>.1 The ILLIAC IV 

The ILLIAC IV is a large, one-of-a-kind, parallel, processing 

computer built by Burroughs. Codes designed for the ILLIAC IV can be 

run only on it (although the algorithms could be converted to other 

vector computers). Illiac IV is composed of 64 individual computers 

called PEs that operate in lockstep under the control of a central 

managing computer called the eu. The PEs have access to the large 

rotating disk memory that contains the bulk of the memory on the 

computer. The in-core memory ()f each PE is quite small, so all of the 

flow fiE!ld data resides on the disk and is brought into core a small 

piece at a time to be operated upon. The efficiency with which this 

transfer is accomplished has a great effect on how fast a code will 

run. This operation is directed by a set of instructions called a disk 

map that controls the transfer of specific data between the disk memory 

a,nd core. 

3> .2 The Pencil IB ta Management Sys tem 

The flow field must be divided into regions that are transferred 

into core one at a time. Because the fast Fourier transform is used so 

extensively in this code, data from a line ()f mesh points that extend 

entirely across the computational box must be in core all at once. the 

memory-management system chosen is the "Pencil System," as developed by 

Pulliam ,and Lomax (1979). 

The ILLIAC IV is run in 32-bit word mode, which allows the pencil 

size to be 8 x 16 x (mesh size) words in size. This is depicted in 

Fig. 3.1. The spatial derivatives are handled, in order, such that 

a,l1 derivatives in the x-direction are performed while the pencils 
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in that direction are in core. The other two directions are handled 

consecutively, in a similar manner. A typical predictor or corrector 

step involves processing each of the x pencils in turn, then each of 

the y pencils, and then the z pencils. Each set of pencils requires 

one complete pass over the entire flow field. 

Kutta requires four function evaluations 

requires twelve passes over the flow field. 

Since fourth-order Runge-

per time step, the code 

~ile this is very time-

consuming, the pencil system allows great freedom in constructing means 

of analyzing the simulated flow fields and allows easy modification of 

the code for other purposes. 

3.3 Cbordinate Remeshing 

The linear coordinate transformation as described in Chapter II is 

analytic and is incorporated into the equations in its entirety. This 

transformation allows the transformed coordinates x and y to become 

almost parallel after a length of time. 1b avoid accuracy problems in 

the code, it is necessary to stop the calculation after a time, shift 

the sheared mesh back to the other side of Cartesian, and then proceed 

again (Fig. 3.2). It has been found that this remeshing process is 

essentially exact if the calculation is stopped when the top of the 

computational box has moved one-half period (St = 0.5). The mesh is 

then shifted back one period to (St = -0.5). W"len the remeshing is 

done at this point, there is no interpolation necessary, as the points 

of the new and old meshes fall exactly on top of each other. There is 

one numerical problem associated with this. Because the orientation of 

the mesh in the y-direction is changed, there is aliasing in that 

direction associated with remeshing. Let a particular Fourier mode be 

represented in two dimensions on the second mesh in Fig. 3.2 as 

u(x,y) = (3.3.1) 

(Recall that the mesh system shears with the mean velocity.) If the 

remeshing is done at St = 0.5, then the new coordinates, as measured 

on the third mesh in Fig. 3.2, are 
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x' = x + y + x = x' - y' 

(3.3.2) 

y' y 

Substituting (3-3-2) into (3-3-1), we find that the same Fourier mode is 

represented on the "remeshed" mesh as 

u(x' ,y') = (3.3.3) 

If (k2--k1 ) falls outside the range of available wave numbers, that 

informat:lon will appear in a lower wave number in the y-direction. This 

problem is eliminated by f11 tering the high wave number parts of the 

solution in the y-direction both before and after the remesh process. 

The filtering is performed by Fourier transforming all the flow vari­

ables in y, truncating the top one-third of the wave number coeffici­

ents and retransforming back to real space. This is performed on flow 

fields which contain little information in the highest wave numbers and 

only at remeshings. It remOV4~S at most 1% of the turbulent kinetic 

energy. Its effect on the solution is small, and it eliminates a known 

source of error. 

3.4 Initial Conditions 

Turhulent initial conditions as used in low Reynolds number and 

l,arge eddy simultions will always be somewhat artificial. There are 

m.any statistics used to describe these flows but no organized algorithm 

f,:>r producing these statistics in an initial flow field. The hope, that 

is generally borne out by numerical experiment, is that, if some statis­

tics are enforced on the initial field, the others will develop through 

the actic)n of the equations. In other words, the initial flow fields do 

not represent a turbulent flow field, but after being advanced for a 

time by the code they develop the characteristics that allow us to call 

them truly turbulent. 

In the compressible flow, the five flow variables are completely 

independent and subject only to the restriction that both density and 

pressure be positive. 
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The variables may be thought of as being in nondimensional form. 

They are non-dimensionalized on a sound speed co' a density Po' 

and the computational box length Lo. Because of this nondimensional­

ization the velocities are closely related in magnitude to Mach num­

bers. The average value of the computational density is one, as is the 

computational pressure. This makes the average ini tial computational 

sound speed c (different from co) of magnitude 1.18. 

2 c = y! 
P 

c = IY = 1.18 (3.4.1) 

ke have chosen to start each calculation with a velocity divergence 

free field, as in an incompressible simulation. Since the initial flow 

fieids are artificial, any dilatation introduced is unphysical. If any 

is to appear, it should grow through the action of the equations of 

motion. Wray (1980) has found in two-dimensional simulations of iso-

tropic turbulence that these ini ttal divergences decay very quickly, 

leaving behind density variations and a flow that behaves almost incom­

pressibly. In the shear flow we felt it best to allow compressible char­

acteristics to develop under the forcing action of the mean shear rather 

than introducing them as Wray did in the unforced isotropic flow. 

The procedure fO,r producing the initial velocity field is as fol­

lows. t..e first choose a completely arbitrary random set of velocities 

through the action of a random number generator. We add the gradient of 

a yet to be determined potential function onto this velocity field. 

= (3.4.2) 

where u~ is the solenoidal (dilatation-free) velocity field and uf 

is the original random field. Since u~ is solenoidal, it disappears 

when we take the divergence of (3.4.2), producing a Poisson equation for 

<1>. 

= (3.4.3) 
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Because of the periodic boundary conditions and the availability of 

fast Fourier transforms, we have a particularly convenient and accurate 

w.:ty to solve this equation. It is, first Fourier transformed. 

= 

ikjUj 

kZ 

InvE!rse Fourier transforming provides the solution cj>. 

(3.4.4) 

The con-

stant of integration is fixed by setting the zero wave number coeffi·­

c:lent to zero. 

The velocity field u~ is solenoidal, real, and free of mean vel'­

odty but has a white noise type of velocity spectrum. t-e take this 

spectrum by transforming the velocities into Fourier space and integrat·­

ing the kinetic energy in spherical shells to produce a 3-D energy spec'-

tlt'um. 

E(k) = 
-+- ""*-+-< u

i 
(k) u

i 
(k) > (3.4.5) 

H~~re, < > indicates an integration over all directions, leaving the 

k:lnetic Emergy as a function of the wave number magnitude alone. 

All of the veloci ties in ench spherical shell are then adjusted by 

the same constant (a function of k) to enforce a specified energy 

spectrum, E(k) onto the flow field. 

l\e also enforce that the time derivative of the divergence be zero, 

as in an incompressible flow, so that there is no violent behavior when 

the simulation starts. This is done by specifying the pressure field 

through .mother Poisson equation. t-e take the divergence of the momen'­

tum equations 

aa aa· 2 
-- -- pu + -- --. pu u + V P aXi at i aX

i 
aX

j 
i i 

a a 
:= aX

i 
aX

j 
'ij (3.4.6) 

For the :lnitial flow field with zero dilitat:lon and constant density, 

(31.4.6) becomes 
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= (3.4. 7) 

which we solve in the same manner as (3.4.3). 

All flow fields used as initial conditions were set up in tris man­

ner. Initially they are incompressible, but their development is then 

guided by the full Navier-Stokes equations. Velocity divergences de­

velop quickly. 

3.5 Performance of the Cbde 

There are actually three codes involved in the simulations. The 

severe limitation on in-core memory of each processing element (PE) has 

forced the dissection into codes: 

1. TB-LOD.IHICS. Creates and stores the initial flow fields. 

2. TB-LOD.HSTA. The time advance code, which does some prelimi­

nary data reduction. 

3. TB-LOD.REDUCE-DATA. Performs the bulk of the data reduction. 

The mnemonics TB is the author's identifier on the ILLIAC system. The 

LOD indicates an executable load module. IHICS stands for isotropic 

homogeneous initial conditions. HSTA means homogeneous shear time ad-

vance. 

All three codes operate with the same pencil data-management sys­

tem. This system can operate with three mesh sizes, 163 , 323 , or 643 • 

For the time-advance load module, the code requires 28 words of memory 

for each mesh point. In 643 , this is 7.34 million words. Including 

additional disk areas needed for data output and temporary storage, the 

management system allocates 12.17 million words out of an available 15.9 

million. Although the data-reduction load module does not require the 

large amount of memory that the time-advance module needs, this storage 

capability is very convenient in processing the simulated flow fields. 

The time-advance load module consumes most of the central processor 

time. In 323 form, this load module requires 8.5 seconds per time 

step. In 643 form, it requires 89 seconds per time step. Most of the 

work was performed with the 643 version. 
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There are eight simulations associated with this thesis. The 

shortest, corresponding to the highest shear rate, took 7.5 hours. The 

longest, the isotropic simulation, took 18.0 hours. This does not in-­

elude aU the data reduction, which was also performed on the I11iac. 

3.6 Testing the Code 

As was stated in Chapter II, one must be particularly careful to 

run checks on the code to ensure that it is properly constructed. To 

this end!, checks were performed in three categories. The code was 

written to be quite readable and was thoroughly sight checked. The 

slecond eategory involved simulation of two-dimensional Taylor-Green 

problems, which are known to be exact solutions to the incompressible 

flow equations. The third category involved simulation at low Mach 

number of isotropic turbulence and comparison of some statistics with 

experiment. 

3.6.1 TWo-Dimensional Iay1or-Green Problems 

There is an exact analytic solution to the two-dimensional, incom­

pressiblE~, Navier-Stokes equations. It is known as the two-dimensional 

T.aylor-Green solution. The solution is as follows: 

2 2 
1/2 -(k1+k2)vt 

A cos k1 x sin k
2

y e u = 

(3.6.1) 

P 

Th.e flow fields consist of 2-D vortices, arranged rectangularly, that 

sImply decay in strength with Hme. 

This is not an exact solution for the full compressible equations. 

It was thought that, for low Mach numbers, the compressible flow field 

should behave almost incompressibly and the solution (3.6.1) should be 

closely approximated by the compressible code. By numerical experiment 

this is true. 
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The initial conditions were Eqn. (3.6.1) at t = 0, k1 = k2 = 1, 

and A = .05 (about Mach = 0.04). The code was first run with a Car­

tesian mesh (St = 0). After 40 time steps the maximum deviation from 

the analytic solution was 1.42 x 10-5 or .028% of the maximum veloc­

ity. w.Lth the mesh sheared to St = 1.0, which preserves the periodic 

boundary conditions on the solution, 

1.47 x 10-3 and 2.94%. 

the corresponding numbers are 

The numerical solution is in quite close agreement with (3.6.1), 

even though it is not an exact solution of (1.2.2)-(1.2.7). These 

experiments were run in 163 and for all orientations of the initial 

condi tions in x, y, z for the St = 0 mesh. For St = 1.0, they were 

per~ormed in the x,y plane (downstream, cross-stream). 

3.6.2 Low Mach Number Isotropic Turbulence 

As in the previous section, it is felt that at low Mach numbers the 

flow fields should be virtually incompressible and therefore should pro­

duce turbulence statistics quite similar to incompressible codes and to 

experiment. Again this is true by numerical experiment. 

A 643 run was performed with the shear rate set equal to zero. 

The initial conditions were constructed by the code TB-LOD.IHICS in the 

manner of Section 3.4. The initial spectrum was a box between wave num­

bers 8 and 16. The initial average Mach number was MO ~ .078 and the 

ReA = qA
11 / v = 40. 

flow
1
auring the simu-

initial Thylor micro scale Reynolds number was 

Figures 3.3 to 3.10 show the evolution of the 

lation. Figures 3.3 and 3.4 are three-dimensional energy spectra. In 

each figure the lower curves are 3-D spectra of the normal stresses of 

the Reynolds strss tensor. It can be seen that the flow evolves from 

the very artificial initial spectrum to a realistic-looking low Reynolds 

number spectrum as the simulation proceeds. There is no linear region 

to represent an inertial range, but the slope does pass through the 

value of -513 as the wave number increases. At low k the slope 

passes through a value of 4, an analytic shape for low wave numbers. 

After wave number 32, a steeper slope in the spectrum is observed. This 

is a result of the way the spectra are taken. The scalar wave number 
of-

k is the magnitude of the vector It. The energy in each spherical 
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shell il3 simply summed over the number of points (samples) in that 

shell. After wave number 32, the shell begins to grow outside the cubic 
+ 

domain of k and therefore the number of contributing points decreases 

above k = 32. The decrease in energy simply reflects the decrease in 

sample size. No attempt is made to extrapolate beyond k = 32. Figure 

3.5 is r,epresentative of lateral and longitudinal two-point correlations 

in the 2:-direction; z was arbitrarily chosen for display, as all di-

rections are equivalent. The figure was produced at the same time as 

Fig. 3.4, t = 7.8. It shows the expected primarily positive behavior 

of the longitudinal correlation R33(0,0,r3). 

+ + + < ui(x) uj(x+r) > 
+ + < u i ( x) u / x) > 

(3.6.2) 

and the: close agreement between the two lateral correlations, 

R22 (0,0,r3 ) and Rll (0,0,r3 )· Figure 3.6 shows the three longitudinal, 

one-dimensional spectra, Ell (k1 ) , E22 (k2 ) , E33 (k3 )· Ell (k1) is 

defined as 

(3.6.3) 

are defined similarly. The similarity of the 

three curves shows that the flow remains quite isotropic at all wave 

numbers, as it should. The one-dimensional spectra are Fourier trans­

forms of the two-point correlat.ions. Because there is little inJ;orma­

tion in the high wave number region, microscales as calculated from the 

correlations should be quite accurate. Figures 3.7 and 3.8 show the 

time evolution of the microscales and the integral scales, respectively. 

The Taylor microscales are defined in the usual way by fitting the 

osculating parabola to the two-point correlation at small separation. 

The integral scales are defined as twice the separation where the two­

point correlation first reaches a value of 0.1. The reason for this 

will be I~xplained in the next section. After t = 5.0, both micro- and 

integral scales grow almost linearly, but very slowly. 

Figure 3.9 shows the time evolution of the kinetic energy and its 

three normal components. A power-law fit to this curve shows a best 

fit with a slope of about -1.25, in good agreement with theory (Hinze 
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(1975» and experiment (CBC (1971» for low Reynolds number isotropic 

turbulence. 

Figure 3.10 shows the time development of the velocity derivative 

skewness defined as: 

= aU i 3 j" < aX
i 

> < (no summation) (3.6.4) 

The skewness is associated with the energy cascade process and is mea­

surable in the wind tunnel for the downstream direction. Its value is 

quoted in several experiments (Tavoularis et al. (1978» as about -0.40. 

It can be seen that all three curves in Fig. 3.1.0 come to asymp­

totic values of about -0.35 to -0.41. 

Although the time-advance code is designed for compressible flow, 

these results give confidence that it is capable of simulating low Mach 

number (incompressible) turbulence. It must be able to simulate this 

flow before it can be used in a higher Mach number problem. 

3.7 Description of a Typical Sheared Run 

A typical sheared run is described, along with the limitations and 

troubles generally encountered. This is presented to show the limits of 

validity of these simulations and the criteria used to judge this valid­

ity. 

As described in Section 3.4, the initial conditions used to start 

the simulation are quite artificial. The initial conditions are simply 

described as a constant density field, a dilatation-free, random, iso­

tropic, initial velocity field with a square wave (top hat), 3-D energy 

spectrum, and a pressure field set according to the velocity field to 

maintain 3/at(3ui /3xi ) = 0 at time zero. As described in the previous 

section, the flow field requires a certain time to develop turbule:qt 

flow field characteristics. In the isotropic flow this was judged as 

the time when the velocity derivative skewness reached an asymptotic 

value. 

In the shear flow, this time was judged by several different stan­

dards. Fortunately, they all point to a common time when the flow field 

might truly be judged turbulent. These criteria are: 
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1. The shear stress coefficient reaches an asymptotic value. 

= const (3.7.1) 

2. The kinetic energy is seen to increase. 

3. The 3-D energy spectrum reaches an asymptotic "shape" as i.t 

changes from the initial square wave spectrum. 

'1he last criterion is a matter of judgment, but estimates made by cri.­

terion 3 agree quite well those with criteria 1 and 2. 

After this initial period, during which the flow field evolves from 

the artificial initial conditions, there is a period during the simula­

tion when the judging criteria :indicate that a true turbulent flow field 

is being simulated. These criteria will be discussed below in the de­

scription of the simulation HS64B. This period, during which the sta­

tistics are extracted from the flow field, is thoroughly discussed as 

the subject of Chapter IV. 

The simulation gradually moves out of this valid stage into a phase 

in which the scales of motion grow too large for the computational box. 

In the homogeneous shear flow, the length scales associated with the 

turbulent motion are known to grow with ti.me. This indicates that 

structures or eddies in the flow grow to a size where they are influ­

enced by the imposed periodic boundary condi tions • Beyond this point, 

the flow field is no longer representative of an infinite, homogeneous 

shear flow, so the simulation is stopped. This time is judged by the 

appearan1ce of the two-point correlations, which are a statistical mea­

sure of the spatial relationships in the computational box. These 

correlaUons were defined in Eq. (3.6.2). 

As 1idll be discussed in Chapter IV, the time is nondimensionalized 

by multiplying it by the shear rate. In terms of this nondimensional 

time, St, all of the simulations were judged to be valid between 

times St = 4.0 and St = 6.0. 

The simulation chosen to illustrate the history of a sheared run is 

l.abeled HS64B. As discussed in Section 3.4, the flow-field variables 

are nondimensionalized on a den.sity Po, a sound speed Co, and the 

41 



computational box length Lo. Other nondimensional quantities may be 

formed directly from the nondimensional flow variables, in which case 

the original nondimensionalizing values of Po' Co' and Lo drop 

out. In these terms the initial characteristics may be summed up: 

1. Shear rate S = 1.5. 

2. Initial fluctuating velocity q = 0.1. 

3. Square wave 3-D spectrum 8 ( k ( 16. 

4. Box Reynolds number Reb = Co Lo/v = 500. 

Some nondimensional measures: 

1. Taylor microscales Reynolds number ReA = 25.5. 

2. Average fluctuation Mach number M = .078. 

The initial spectra appear exactly the same as Fig. 3.3, so they are not 

repeated here. Figure 3.11 shows the development of the coefficients 

associated with the off-diagonal elements of the Reynolds stress 

tensor. The < u'v' > coefficient was defined in Eq. (3.7.1). In this 

shear flow the other two coefficients associated with < u'w' > and 

< v'w' > should remain zero. It can be seen that this is so to a few 

percent through St = 6.0. The shear stress coefficient associated with 

< u'v' > starts from its isotropic value of zero at St = 0.0 and 

reaches an asymptotic value of -.64 by St = 4.0 and remains virtually 

flat through St = 6.0. 

The development of the kinetic energy as a function of St is de­

picted in Fig. 3.12. It can be seen that it reaches a minimum at about 

St = 4.5 and increases afterward. The < pu,2 > component of kinetic 

energy reaches a minimum much earlier at about 

quickly drained from this term into < pv,2 > 
St 2.0, but energy is 

and < pw,2 > through 

the action of the pressure-strain terms in the dynamic equations for 

these quantities. 

The mechanism of kinetic energy production is obviously in opera­

tion almost from the start of the calculation, but the shear stress co­

efficient which represents this mechanism reaches its asymptotic value 

about the same time that the kinetic energy begins to increase. 
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Figures 3.13 and 3.14 show the 3-D energy spectra at times St == 

4.0 and St = 6.0, respectively. It can be seen that they have 

evolved considerably from the initial spectrum and that they closely 

r.asemble each other. Kinetic energy originally present in the initial 

spectrum and the kinetic energy added to the flow through the action of 

the production term have been redistributed among the wave numbers in 

the 3-D spectra through the action of the nonlinear convective terms. 

This process fills in both the low wave numbers, k < 8, and the high 

wave numhers k > 16. The viscosity chosen for the simulation plays a 

great role in determining the shape of this spectrum (alternatively, the 

box Reynolds number). The nonlinear convective terms will continue to 

propagatE! kinetic energy to higher and higher wave numbers (smaller and 

smaller scales), unless there is sufficient viscous dissipation to 

change this kinetic energy into heat. If there is insufficient viscos-­

ity or, equivalently, the box Reynolds number is too high, the higher 

wave numbers collect too much kinetic energy, as it is not being 

dissipatE~d quickly enough. The phenomenon of aliasing occurs, where 

information destined for higher, non-existent wave numbers returns to 

masquerade in, and pollute, the low wave numbers. This occurs when 

there is any information in the wave numbers greater than 2/3 of the 

maximum wave number. Figure 3.15 shows the one-dimensional, 

longitudinal kinetic energy spectra at time St = 6.0. It can be seen 

that information contained in each direction in the 2/3 kmax wave 

number (i.n our case k = 21) is two orders of magnitude less tha.n the 

energy pE~ak at low wave number. 

The simulation begins to degrade when the structures in the flow 

grow large enough to be affected by the peri.odic boundary conditions. 

This is shown in Figs. 3.16 through 3.18. Figure 3.16 shows the two­

point correlation at St = 4.0. Figure 3.16 shows the correlation at 

time St = 6.0 and Fig. 3.18 at St = 7.0. At St = 4.0, the curves 

still show almost zero correlaUon at Delta R = 3.2, which is half of 

the computaitonal box width. For a valid use of periodic boundary con·­

d:l tions, motions in regions separated by half the box width must be 

uncorrelated. By St = 7.0, the R33 (0,0 ,r3) correlation has 

r·eached 18% at the half width, indicating interference of the boundary 
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conditions. B¥ limiting the maximum tolerable half-width correlation to 

10%, we restrict the region of validity to St ( 6.0. 

In summary, each calculation passes through three stages: 

1. Develoment away from the initial conditions. 

2. TUrbulent simulation. 

3. Interference of the boundary conditions. 

The validity of the second stage is affected by the value of the box 

Reynolds number. There must be sufficient viscosity to hold the energy 

in the high wave numbers much below that in the peak wave number. For 

the simulations in this thesis, we use one order of magnitude. 

Ie have confidence that the computer codes are operating properly 

and'now proceed to use them as a numerical wind tunnel. 

In the next chapter we discuss the seven complete compressible, 

homogeneous, shear flow simulations and present the measurements that 

have been made from the simulated flow fields. 
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Chapter IV 

CALCULATIONS AND RESULTS 

The calculations and results are discussed in this chapter. The 

independ,ent dimensional parameters of the flow are listed, as are the 

nondimensional groups formed from them. A description of the simula­

tions that were performed is presented. ~ then discuss the behavior of 

the Reynolds stresses and the Reynolds stress equations, with particular 

attention paid to modeling of the various terms. 

4.1 Dimlensional Parameters and Nondimensional Groups 

There are eight independent: dimensional parameters that can be used 

to chara(!terize compressible, homogeneous shear flow. They are: 

1. p Density 

2. J.I Molecular viscosity 

3. q2 := < uiui > Turbulent intensity 

4. c Speed of sound 

5 S dU/dy Mean velocity gradient (shear rate) 

6. L Integral length scale (L=L
ll 

used throughout) 

7. A Taylor microscale 

8. K Coeffident of heat conductivity 

Some of these quantities are related through the dynamics of the flow 

and are, therefore not truly independent. 

The density is the average density in the domain, a constant. The 

molecular viscosity is fixed for a given simulation. The turbulent 

intensity is the trace of the Reynolds stress tensor divided by the 

OPI 2 density. The speed of sound is defined by dp s = c. For a perfect 

gas, c2 = ~P, where the ratio of specific heats y is 1.4. The shear 

rate can be chosen arbitrarily. 

We define the integral length scale, L, as twice the separation 

at which the two-point correlation first reaches a value of one-tenth. 

This def:Lnition differs from the standard integral definition. The two'­

point correlations can have large negative loops, and therefore definite 

integrals of these functions can be poorly behaved. Figure 4.1 shows 

three correlations for a typical flow field. Harris et al. (1970) 
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encountered these problems and defined L by integrating up to the 

first zero crossing. His definition and ours are both portrayed. Our 

definition gives a length scale which is always larger than both Corr­

sin's and the standard one. It has been adopted for ease of calcula­

tion. The Taylor microscale is defined in the usual way by fitting the 

osculating, parabola to the two-point correlation at small separation. 

The coefficient of heat conductivity is set by fixing the Prandtl 

number, using y = 1.4 with the perfect gas law constant. 

Dimensional analysis shows that five nondimensional groups may be 

formed. Three of these are shown in Table 4.1, where we also include 

values of these quantities found in our simulations and in experiments. 

~ choose values of the shear number that are similar to those in high­

speed mixing layers and homogeneous flow experiments. ~ choose a range 

of fluctuating Mach, numbers which spans the range from incompressible 

flow to values observed in high-speed flows. Mesh resolution limits the 

Taylor microscale. ~ use the highest value allowed. The ratio' of 

length scales is known to be a function of the Reynolds number. It is, 

therefore, not independent. In our simulations it has a value of about 

4. As just stated, we have fixed the Prandtl number. In all our simu­

lations we use Pr = 0.74, a value suitable for air. This leaves just 

three truly independent nondimensional groups that we vary during the 

simulations. 

Other nondimensional groups can be formed from combinations of the 

groups in Table 4.1. For instance, SL/q times q/c is the "shear 

Mach number," SL/ c. ~ mention this number because it is more akin to 

the conventional external flow Mach number. It represents the change in 

Mach number across a typical large eddy. Note we take L=L
ll

, 

In some results we show the time-dependence. 

time is St. 

4.2 Description of' the Simulations Performed 

Eight complete simulations were performed. 

The nondimensional 

Including the inevi-

table waste, approximately 250 hours of central processor time were 

consumed on the ILLIAC-IV. Seven of these simulations were homogeneous 

shear flows. The eighth was the low Mach number isotropic flow that was 
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dl;!scribed in O1apter III. We present data from the seven shear flow 

s:Lmulations in this chapter. h; discussed in Chapter III, we start the 

code with artificial initial conditions, and the flow field must develop 

into a truly turbulent field through the action of the equations of 

motion. Consequently, in each simulation, there is a time before which 

WE~ cannot: accept the data. Correspondingly, there is a time after which 

the scal4;!s of motion are too large for the computational box and peri-­

odic boundary conditions are no' longer appropriate. tie find the flow 

f:Lelds to be satisfactory between nondimensional times, St, of four 

and six i.n all runs, which we hereafter designate as the "good times." 

Turbulent statistics are evaluated only when St is an integer. 

TIlis was done as a matter of convenience and because a short sample time 

w()uld give flow fields that were not suffic:i.ently independent. This 

14~aves us with 21 flow fields to analyze. 

Figures 4.2 and 4.3 show the 21 flow fields in the parameter space 

of shear number, S, 

seale Reynolds number, 

fluctuating 

ReA' 

Mach number, M, and Taylor micro--

In 'fuble 4.2 we tabulate the variation of the three nondimensional 

parameters and show our labeli.ng for each of the simulations. there is 

no simulation labaled HS64E (there was, but it had far too high a vis-­

cosity and was discontinued). In many cases we show plots for each of 

the seven simulations (seven plots), and we shall designate the plots by 

labels a through h. To make the plot numbers correspond to the. flow 

L::tbels, lie always skip the label e. 

Initial data reduction was performed on the ILLIAC-IV. Calcula--

t:lons of spectra and integrations over the 64 x 64 x 64 mesh require the 

entire flow field and are practi.cal only on this machine. However, once 

these quantities are calculat.ed, they are transferred to a more 

conventional serial computer for further processing. 

The appendix presents the raw data from the ILLIAC and may be use-­

ful for further investigations. All correlation data that we present 

alre further reduced from the appendix. 
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4.3 Averaging for Statistics; Connection between Favre and Conventional 

Averages 

There are many types of averaging that have been used in turbulent 

flows. l-.e have presented the averaged equations and our approach to 

solving the unaveraged equations, but the averaging process is still 

unspecified. 

TIle ideal averaging process is an ensemble average, in which many 

realizations of the same flow are averaged. A homogeneous flow is sta­

tistically the same at each point. A volume-average over the entire 

mesh approximates an ensemble average. l-.e carry out this volume average 

by a summation over the entire mesh and indicate the average of a by 

<a>.' 

In Chapter I we spoke of the equivalence of Favre (mass weighted) 

and conventional Reynolds averaging in the homogeneous shear flow. TIlis 

can be illustrated rather simply as follows. 

Using the definitions in Chapter I, we write the total velocity as 

the sum of mean and fluctuating parts without specifying the type of 

average. 'Recall that the Favre average ui is defined by ui = 

puilP and that the Favre and conventional fluctuating quantities, ui 

and ul, are the differences between the unaveraged velocity and the 

respective mean. 

= 
(4.3.1) 

= 

Using the definitions of the averages, 

-.tV 

pU i = pui , pU i = P ui ' ui = 0, pui = 0, 

= pu+p'u' i i 
(4.3.2) 

or 

= (4.3.3) 
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The last term in (4.3.3) is the integral of the fluctuating momen­

tum. Momentum is analytically conserved in a periodic domain, so that 

this term is a constant in time. The two velocity fields are then rela·­

tied by an additive constant. For convenience we choose the constant to 

be zero, which makes the Favre and conventional averages identical. 

4.4 Nonlinear Least-Squares Data-Fitting. 

In many places in this work we use a least-squares fit to data as a 

tool to study its behavior. W~ have 21 flow fields from which we take 

measurem,ents. .As discussed above, these flow fields span a range of 

shear, Mach, and Reynolds numbers. this allows us to least-squares fit 

the 21 realizations of a particular quantity with a function that will 

show us the statistical variation of the quantity with these numbers. 

The fitting function that we use varies somewhat, depending on the 

quantity that we fit. In some eases we know what the behavior should be 

for the limits where one or more of the numbers becomes zero. The fit­

ting functions reflect this known behavior • 

.As an example we discuss the function 

(4.4.1) 

which has been used for a number of results. ~ would use this func-

tion for a quantity that would disappear when the shear rate became zero 

or infinity, depending on the sign of a -,- hence the appearance of 
a 

(~L). The Mach m.unber term represents the first two terms in an expan-

sion. This is a relatively standard analysis that may be found, for 

example, in Van Dyke (1975). It would be used for a quantity that would 

e!xist in an incompressible flow, but could be altered in compressible 

flow. 

The Reynolds number dependence is represented by the last term. In 

some cases we have arguments as to the behavior in the limits of zero 

and infInite Reynolds number. In this function, we have used a power 

law that disappears at zero or infinite Reynolds number, depending on 

the sign of c. 

The coefficient, d, is simply a scaling parameter. 
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As each function is used, we shall give a short explanation of why 

it has its form. The errors that are quoted are the r.m.s. deviations 

between the actual values and those predicted from the fitting function. 

These are then normalized on the actual values. They are percentage 

r .m.s. errors. 

4.5 Measures of ReynoYds Stress :sehavior 

we first discuss structural measures of the Reynolds stress tensor, 

Rij = < puiu j >, in general and then seek changes that occur in the 

compressible flow. 

4.5.1 Shear':"'Stress o:>rrelations 

The shear-stress correlation coefficient is defined 

c = < uv > /[< u2 > < v2 > ]1/2 (4.5.1) 

It is a measure of the strength of the turbulent shear stress and is 

experimentally known to be about C = 0.5 in shear flows. Figures 4.4a 

through 4.4h show the time development of this correlation coefficient. 

It will be noticed that the magnitude of the coefficient becmes quite 

large and then decreases throughout, the "good time" indicating that the 

flows are still evolving throughout this period. There is too much 

scatter in the experimental data to say whether this trend is also 

observed in the laboratory. It is yet unclear in both numerical and 

laboratory experiments whether there is an asymptotic structural state 

to which these flows evolve. Evidence indicates that this may be so, 

but we are unable to carry the simulations far enough in time to deter­

mine this. Further evidence will be given in support of the hypothesis 

that an asymptotic state exists. 

The value of the coefficient during the good time is larger than 

experiment. The average value over the 21 flow fields is C = 0.67, 

the standard deviation is 0.03. The corresponding value for the HGC 

(1977) flow is C = 0.47. The larger value that we calculate agrees 

with the simulations of Shirani (1981) and of Rogallo (1979). 
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Suspecting that this difference may be a low Reynolds number 

E!ffect, we least-squares fit the shear-stress coefficients with the 

fitting function. 

f (4.5.2) 

I~ used this form because we expect that c will be zero if the shear 

number becomes zero, i.e., there will be no shear stress if there is no 

mean velocity gradient. W:! do not expect c to disappear at zero Mach 

number, and we look for Reynolds number dependence as a power of Rey­

nolds number. 

The! values of the calculated constants in (4.5.2) indicate which of 

the nondimensional parameters is most important in the variation of the 

shear stress coefficient. lie find that the three constants a, b, c 

nre essemtially zero, indicating no dependence on the Reynolds number or 

the othE!r parameters. toe now suspec t that these larger than experimetl­

tal values are due to the fact that the flow is still evolving. 

4.5.2 Principal Axis Measures 

The! orientation of the coordinate system used in these simulations, 

nlthough arbitrary, is the conventional choice. There is a coordinate 

system :In which the stress tensor becomes diagonal. This is the prin­

eipal axis coordinate system. The angle a between the two systems 1.s 

defined as 

1 -t -2 < puv > ;J (4.5.3) a = - tan 
2 < 2 2 pu > - < pv 

This measure of the stress tensor structure has been used by Corrsin. 

1~ least-squares fit a by thl~ fitting function, Eq. (4.5.2), in ordElr 

to discover which parameter is most important in determining this rota­

tion. 

toe have again used (4.5.2) as a fitting function, but for a 

slightly different reason. At zero shear number a flow that has come 

to equilibrium will be isotropic. In this case (4.5.3) is indetermi­

nate, bl~cause any orientation of the coordinate system is equivalent:. 
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However, at infinite shear number the coordinate systems coincide. t..e 

expect a negative exponent on the shear number. we do not expect a to 

disappear with the Mach number, and we again look for Reynolds number 

effects with an exponent on ReA. 

In Fig. 4.5, we plot the angle a against the estimate from the 

fitting function. The constants that were determined are shown in the 

upper left corner of the plot. If Eq. (4.5.2) were a perfect fit, the 

data would lie on a single 45° line radiating from the origin. t-e see 

from the constants that the greatest dependence is on the shear number, 

as indicated by A = -0.40. For comparison we also plot the experimen­

tal point of a;c (1977) on Fig. 4.15 and note that it falls at one end 

of our correlation region, in good agreement with our results. 

In our simulations the principal axes of the stress tensor lie 

between 11 and 22° from the x-axis. The principal axis of the mean 

strain-rate tensor lies at 45°. Since eddy viscosity models force these 

two sets of axes to coincide, an eddy-viscosity model would not be 

appropriate in this flow. This conclusion also applies to one and two 

equation models, as defined by Reynolds (1976). These models calculate 

an eddy viscosity from the kinetic energy and a length scale. They 

cannot represent all the components of the Reynolds stress tensor at the 

same time and should not be used in flows in which more than one 

component of the stress tensor is important •. 

4.5.3 Principal Stress Ratio 

t..e may also examine the ratio of the principal stresses. These 

stresses are related to the stresses in the unrotated corodinates by 

-a a ,b < pu
2 

> ; < p.2 > ± [« pi > ; < pi > t + < pu. >2] 1/2 

(4.5.4) 

The transverse stress < pw2> is also a principal stress and is not 

changed by the rotation. 

We calculate the ratio of the principal stresses in the X - Y, or 

shear plane, and least-squares fit these values with the function 
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(4.5.5) 

~e use (4.5.5) because we know the principal stress ratio is one in 

an equilibrium flow with a zero shear number. l\e expect a positive 

exponent on (SL/q). The arguments for the Mach and Reynolds numbers 

remain as before. 

In Fig. 4.6, we plot this ratio vs. an estimate from the fitting 

function (4.5.5) and show the values of the calculated constants in the 

upper left corner. ~ again note a large dependence on the shear number 

indicated by a = 0.74. For comparison we also plot the HGC (1977) 

value. 

For a shear flow, Eqs. (4.5.2) and (4.5.5) could be used to check 

the effectiveness of a model in reproducing these measures of turbulent 

structure. 

4.5.4 Invariants of the Reynolds Stress Anisotropy Tensor 
, 
As described by Lumley (1970, 1977, 1978, 1980), the invariants of 

the Reynolds stress anisotropy tensor can be used to characterize the 

Reynolds stresses. ~ first define the anisotropy tensor as 

b .. 
1J 

(4.5.6) 

'lhis tensor is symmetric, traceless, has bounded maximum and minimum 

values, and vanishes when the stress tensor is isotropic. 

In Figs. 4.7 a through 4. 7h, we show the time development of the 

four nonzero components of this tensor in the shear flow. In all cases 

the diagonal components seem to approach an asymptotic state faster than 

the shear stress component. toe cannot show that the shear flow comes to 

structural equilibrium (constant values of bij ), because we are unable 

to carry the simulations further in time. However, the results strongly 

suggest that this is the case. In a later section we shall use this idea 

to derive a class of models for the pressure strain terms in the Rey­

nolds stress equations. 
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The values of bij , like those of ~j' depend upon the coordi­

nate system. lie seek a measure of the stress tensor that is "invariant" 

with the coordinates. le do this by contraction of various powers of 

bij and define 

II = III = etc. (4.5.7) 

From the Cayley-Hamilton theorem, as discussed by Lumley (1970), we 

find that I, II, and III are the only independent invariants of bij • 

In addition, bij is traceless, so I = O. ~ are left with two inde­

pendent scalars to characterize the stress tensor. 

Figure 4.8 is an adaptation of Fig. 1 in Lumley and Newman (1977). 

In it we plot the values of II vs. III for the 21 simulated flow fields. 

~ also plot the value for the HGC flow and show the limits within which 

all turbulence must lie. 

In seeking a key to the variation of I and II, we least-squares fit 

both of the invariants with the function (4.5.2) for the same reasons 

that we used in Section 4.5.1. The results of this fit are shown in 

Table 4.3. ~ again find the shear number to be the most important 

nondimensional parameter in determining this measure of stress-tensor 

structure. 

he have consistently found that the shear number is the most impor­

tant nondimensional parameter in determining the structure of the stress 

tensor. These fits can be used as correlations in methods of predicting 

shear flows. In many flows the shear number is fixed, and it may be 

possible to base a model on this "structural similarity." 

4.6 Direct Measures of Compressible Behavior 

As discussed in Olapter I, some of the original approaches to 

studying compressible turbulence involved decomposing the flow fields 

into parts and studying their interactions. Moyal (1951) decomposed the 

velocity spectra into "eddy turbulence" and "random noise" parts. For 

very low turbulence levels, he analytically calculated the interaction 

of these parts to second order. 

54 



Numerical simulations allow us to perform these decompositions 

directly on the simulated flow fields and calculate their interactions 

without a limit on the strength of the turbulence. toe carry 11:>yal' s 

ideas further by using his spectral decomposition to define two real­

space velocity fields. toe shall label the incompressible part (sole­

noidal) ur and the compressible part (dilatation) up. 

In Fourier space, a solenoidal (dilatation-free) velocity vector is 

perpendicular to the wave number vector. toe can decompose the Fourier 

transform of the velocity vector into the sum of a vector parallel with 

t:he WaVE! number vector, up and one perpendicular to it u~. Upon 

lnverse-Fourier transforming, we have the velocity fields uS 
i and 

D 
uli' Operationally, we perform this decomposition as follows. toe define 

(4.6.1) 

where 

potential. 

for <p. 

is identified with the gradient of an undetermined scalar 

Taking the divergence of (4.6.1), we find a Poisson equation 

(4.6.2) 

lhe solenoidal velocity field is calculated as the difference, u~ = ui 

-, uf· 
toe can then decompose the Reynolds stress tensor into compressible 

(divergence) and incompressibll~ (solenoidal) parts. Substituting the 

first equality in (4.6.1) into the definition of the Reynolds stress and 

dividing the density into mean and fluctuating parts, we have 

where R~j is the incompressible part and Rpj is the compressible 

part of the stress. 

In Figs. 4.9a through 4.10h, we show the time development of the 

decompos1ed stress tensor for the 21 simulated flow fields. Only the 
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i = 2, j = 2 component of the stress tensor h as a significant com-

pressible component. W:! believe that is related to acoustic 

noise, which is known to propagate preferentially in the Y or gradient 

direction away from a mixing layer. 

W:! see similar behavior in the calculation of 3-D spectra of the 

decomposed components of the stress tensor. W:! divide Rij by the 

density. In Fourier space the stress tensor becomes 

A A 

= (4.6.5) 

Incompr. Compressible 

W:! have written this tensor as the swn of compressible and incompress­

ible parts. 

The spectra of the terms in (4.6.5) are then calculated by the 

method described in Chapter III. The incompressible spectra contain 

information only from the solenoidal velocity field. The compressible 

spectra contain the remainder. W:! designate these spectra as S 
Eij 

D and Eij , respectively. 

In Figs. 4.lla through 4 .12h, we show the 3-D spectra of the dia-

gonal components of S 
Eij and D 

Eij at 'nondimensional time St = 6. The 

solid lines represent the spectra of the trace of Eir The spectrwn of 

the trace of Eij is the standard 3D energy spectra, designated E(k). 

It represents the distribution of the kinetic energy per unit mass over 

the range of turbulent length scales in the flow. Most of the informa­

tion, as we have already seen, resides in the solenoidal component of 

the velocity field. This can also be seen by comparing the values on 
S D the ordinates of the two sets of spectra, Eij and Eij • 

The compressible energy spectra are dominated by the i = 2, j = 
2 components, especially at high wave nwnber. Searching for a reason 

D D for this behavior, we formed the dynamic equations for uiur The pro-

duction term appears to be responsible for the dominance of this compo­

nent. So we write only this term 

(4.6.6) 

(no swnmation) 
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Note that this equation allows for production only when i = 2. 

'1his may be the mathematical reason for the dominance of the i = 2, j = 
2 term and it is probably assoc:iated with noise production. 

For completeness, we present the 3-D spectra of the shear stress as 

decomposed by (4.6.5). Again, most of the information is carried by the 

solenoidal part of the velocity field. These results are presented in 

Figs. 4.12a through 4.13h. 

~ have used a veloci ty decomposi tion based on lliyal' s ideas. By 

dividing the velocity field into compressible and incompressible parts, 

we are able to decompose the Reynolds stress tensor. Our general con­

clusion is that the stress tensor in compressible flow is very similar 

to its counterpart in incompressible flow. The only exception is the 

i = 2, j = 2 component which is associated with noise production. 

These results are in keeping with llirkovin's hypothesis that compressi­

bility has little effect on the structure of the stress tensor. 

How1ever, turbulence models still do not perform very well in high 

Mach number flows. toe suspect: that the problem may be found in the 

modeling of the terms that contribute to the stress tensor. Perhaps 

these models cannot properly represent some compressible effect that 

occurs at higher Mach number, and, therefore, they do not produce the 

incompressible-like stress tensor that we have just examined. 

In the next section we discuss the dynamic equations for the Rey­

nolds stresses in hopes of finding this problem. 

4.7 Reynolds Stress Equations 

'lhe Reynolds stress equations are the time-dependent governing 

equations for the Reynolds stresses. As stated earlier, modeled ver­

sions of these equations are solved in conjunction with the Navier­

Stokes equations in the approach called stress-equation modeling. 'lhis 

more complicated type of modeling is introduced in hopes of capturing 

more of the dynamics of the Reynolds stresses and has found a great deal 

of favor in the literature. Although not yet an engineering tool, it 

sh.ows promise in replacing lower-order models. 
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The stress equations are formed by taking moments of the Navier­

Stokes equations. Due to the nonlinearity of the parent equations, the 

stress equations also contain correlations between fluctuating quan­

tities. Unfortunately, these new correlations are of higher order in 

the velocity than the Reynolds stresses. If we are to use the Reynolds 

stress equations, we must model some of the terms that they contain. 

These modeled terms are generally not measurable by experiment--hence it 

is attractive to measure them in a simulation. 

The Reynolds stress equations for a homogeneous flow are written in 

Eq. (4.7.1). These equations incorporate the linear coordinate trans­

formation described in Chapter II. The spatial derivatives that appear 

in (4.7.1) include the mesh metric St and are defined in 2.3.2. 

= Production 

Pressure Strain 

(4.7.1) 

II < u, ,u, i> Homogeneous Dissipation 
1,J J, 

1 
~ II < ~ (u +u ) > Dilatation Dissipation 
~ K,k i,j j,i 

= (4.7.2) 

Labels for each term are included. 

As can be seen, the terms divide into three types: production, 

pressure strain, and dissipation. The convective terms do not appear in 

homogeneous flows, so we can concentrate on the homogeneous terms. 

Inspection of (4.7.1) shows that the production term, Pij , is the 

product of the Reynolds stress and the mean velocity gradient. These 

terms are responsible for amplifying the stresses and generally drive 

the flow away from isotropy. Since the stresses appear explicitly, 

along with the mean velocity gradient, these terms require no modeling. 
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ThE! pressure strain term, ~ij' involves correlations between the 

f:luctuating pressure and the fluctuating strain rate tensor. 

tention in stress equation modeling is focused on these terms. 

M::>st at:­

They are 

responsible for redistributing the information among the components of 

the stress tensor. In the homogeneous shear flow, the pressure straln 

terms drain energy out of the i = 1, j = 1 component (where the only 

production occurs) and distributes it to the i = 2, j = 2 and i = 3, 

ji = 3 terms, which have no d.irect sources of production. They also 

have a large effec t on the i:= 1, j = 2 or shear stress term. It 1s 

thought that at high Reynolds number this term is responsible for most 

Otf this redistribution. In compressible flows, this tensor is not 

traceless and therefore can have a net effect on the turbulent kinetic 

€!nergy. The pressure strain terms must be modeled in a simulation. 

The homogeneous dissipation tensor, nrj , is familiar to incom­

pressible turbulence modelers. At high Reynolds numbers it is thought 

to be nearly isotropic. However, it can have a redistributive character 

much like the pressure strain terms, if it is not. It is responsible 

for destroying the Reynolds stresses, and its trace dissipates turbulent 

kinetic energy. Uke the pressure strain terms, it must be modeled. 

The last term in (4.7.1) is the dilatation dissipation, nrj • This 

term occ:urs only in compressible flows. It is composed of the fluctu­

a.ting d:l1atation and the fluctua'ting strain rate, and also requires 

modeling. l..e shall show that this term is small in comparison to the 

homogeneous dissipation term and that it may be neglected. 

l..e shall discuss the behavior of the terms in the stress equations 

as calculated from the simulations, and then discuss some models used t.o 

BLpproximate these terms. 

4.7.1 Time Behavior of the Reynolds Stresses 

l..e now discuss the time history of the Reynolds stress equations, 

a.s simulated in the compressibh~ homogeneous shear flow. 

The contributing terms in the Reynolds stress equations (4.7.1) are 

plotted I7S. the nondimensional time, St, in Figs. 4.14a through 4.17h • 

. All terms have been normalized by the shear rate times the trace of the 

stress tensor. 
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In this geometry, the production terms operate only in the i = 1, 

j = 1 and i = 1, j = 2 equations, i.e., there is production only in the 

the equations for < pu2 > and < puv >. This is seen by examining the 

figures. These terms increase the magnitude of < pu2 > and < puv >. 
During the good time of each simulation, each of these terms has become 

relatively constant. 

The pressure strain terms show the expected behavior in the shear 

flow. The term in the < pu2 > equation acts to drain energy from 

< pu2 >. The pressure strain terms are the only terms that contribute 

positively to pv2 and pw2• In the shear stress equation, the pressure 

strain term acts to destroy the stress. 

The homogeneous dissipation terms act to destroy the stresses in 

all four equations. Note that the dilatation dissipation is virtually 

zero in all cases. In comparison to the homogeneous dissipation, it is 

very small and, therefore, we neglect it in the rest of the analysis. 

In Figs. 4.18a through 4.18h, we show the time development of terms 

in the turbulent kinetic energy equation. This equation results from 

taking the sum of the diagonal Reynolds stress equations. he show these 

data to point out the dissipative behavior of the pressure dilatation 

term. In an incompressible flow, the pressure strain tensor is trace­

less because the velocity field is dilatation-free. However, in com­

pressible flow, the pressure dilatation term may have a net effect. Our 

simulations show this term to be dissipative of turbulent kinetic 

energy. This effect is not represented in turbulence models derived 

from the incompressible equations, but we feel that it should be. 

4.7.2 Dissipation Anisotropy 

In high Reynolds number flows, the homogeneous dissipation tensor 

Drj (hereafter referred to as just the dissipation tensor, Dij) is 

thought to be isotropic. we investigate this by forming the dissipation 

anisotropy tensor in the same way that we formed the stress anisotropy 

tensor. 

(4.7.3) 
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If the dissipation is isotropic, then dij would be zero. 

In Fig. 4.19, we plot dij vs. the stress anisotropy bij . tYe 

find that they are nearly proportional. This is a very surprising 

result, which we first attributed to the low Reynolds number of our 

s:imulations. It does not seem to be spurious in that it is also seen in 

the simulations of Shirani (1981) and of Rogallo (1979). toe have a 

Taylor microscale Reynolds number range of about 18-120, so we thought 

that we could search for Reynolds number dependence by studying the 

invariants of dijo These invariants should disappear as the Reynolds 

number increases. 

~ form the invariants in the same was as for the stress tensor and 

least-square fit these scalars by the fitting function. 

f (4.7.4) 

lll:! ChOSE! this function to look for power-law dependence on both shear 

allld Reynolds numbers and because we do not expect the invariants to 

disappear with Mach number. 

t..e expected to find a posi.tive exponent, a, on the shear number, 

and a negative exponent, c, on the Reynolds number. W:! were surprised 

to find a posi ti ve exponent on the Re ynolds number. The resul ts are 

shown in Table 4.4. This indl.cates that there is no tendency for the 

d.issipation to become isotropic at high Reynolds number. This is a very 

i.mportant result that we believe may be characteristic of shear flows. 

1his fact does not seem to be generally recognized and is very important 

i.n turbulence modeling. It plays an important role in some of the 

models that we subsequently evaluate. 

4·.8 Character of the Pressure 

Before discussing the pressure strain terms, we must look at the 

character of the pressure field itself. 

In compressible flows the pressure field obeys a hyperbolic equa­

tion. It has a wavelike character and information travels at a finite 

s:peed. Incompressibility results from assuming that this speed of 
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propagation is very large in comparison to convective velocities. This 

is reflected mathematically by the elliptic nature of the pressure in 

incompressible flows, in which the pressure field adjusts instantane­

ously everywhere to changes in the velocity field. 

This can be shown by taking the divergence of the incompressible 

momentum equations to form a Poisson equation for the pressure. 

= - ui .u. i - ui .U. i ,J J, ,J J, 
(4.8.1) 

The Poisson equation is elliptic. In incompressible flows, it is solved 

in conjunction with the momentum equations to enforce the condition of 

zero dilatation or mass conservation. Equation (4.8.1) shows the pres-

sure to be completely determined by the velocity field. It is not 

really an independent variable. In compressible flows the pressure is 

determined from the thermal energy equation. It is truly a flow vari­

able and represents an additional degree of freedom. 

~ may show the connection between the two ways of calculating the 

pressure by taking the divergence of the momentum equation (2.3.4). 

= - (puiuj ) i· - (pui ) .U. i 
, J ,J J, 

(4.8.2) 

Using the conservation of mass equation (2.3.3), (4.8.2) becomes 

(4.8.3 ) 

where g1 and g2 represent the right-hand side terms of (4.8.2). 

Using the definition of the speed of sound, we may write (4.8.3) as 

(4.8.4) 

which is a nonlinear, inhomogeneous wave equation. This illustrates the 

wavelike or hyperbolic nature of the pressure, in contrast to the ellip­

tic behavior in incompressible flows. 

As the sound speed, c, becomes very large, the time derivative 

term in (4.8.4) becomes small, and in the limit we are left with the 

Poisson equation (4.8.1). 
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It is emphasized that all pressure fields in these simulations are 

c,alculated from the full compressible Navier-Stokes equations. 

Turbulence modelers have exploited the fact that the pressure field 

is the solution of a Poisson equation. In the next several sections we 

apply this reasoning to the compressible flow in order to relate the 

pressure strain terms to commonly used models that were derived from the 

incomprel3sible equations. 

4.9 Poisson Decomposition of the Pressure Field 

Existing pressure strain models have been derived from the incom--

pressiblE! flow equations. Historically, modelers have decomposed the 

pJressure strain tensor into two parts, in order to construct models 

individually for each part. The Poisson equation (4.8.1) is used to 

d:lvide the pressure field into two parts, which are then combined with 

the fluctuating strain rate to form two pressure strain tensors. 

In order to relate existing models to our simulated flow fields, we 

follow the same process in the compressible shear flow. Remembering 

that the mathematical nature of the flow field has changed, we decompose 

the actual pressure strain field in the manner that we shall describe. 

nlis can be done only in a numerical simulation. This is the first time 

that these terms have been directly calculated. 

~ take our direction from (4.8.3). If we define 

WE! then rewrite (4.8.3) as: 

a2 
-(puiu.) i' - (pui ) .U. i + ----2 P 

J , J ,J J, at 
Rotta Fast Compressible 

(4.9.1) 

(4.9.2) 

This is a Poisson equation for the pressure, with g3 written as a 

source tE!rm representing the compressible contribution to the pressure 

Held. Equation (4.9.2) does not reflect the hyperbolic behavior of the 
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pressure, but we use it here to make a connection with models commonly 

proposed for incompressible flow. 

we note that (4.9.2) is linear in the pressure. Therefore, the 

pressure field can be regarded as the sum of three fields derived from 

each of the three source terms on the right-hand side of (4.9.2). l-e 

write: 

= (4.9.3) 

Combining each pressure with the fluctuating strain rate, we have 

= < Pk(ui . + u j i) > ,J , 
(4.9.4) 

where we have again used the symbol < > to denote volume average. we 
now have three distinct pressure strain tensors that sum to the total 

tensor. we identify each piece in keeping with its pressure term in 

(4.9.2). 

1 <Pij is the "Rotta" term involving a pressure resulting from the 

turbulence interacting with itself, originally identified by Rotta in 

1951. 2<Pij is the mean-fluctuating term involving a pressure resulting 

from interactions between the turbulence and the mean velocity. We 

hereafter call this term the "Fast" term (Lumley, 1978). 3<Pij we 

call the compressible component, as it accounts for the wavelike behav­

ior and does not exist in the incompressible flow. Other decompositions 

are possible. The inclusion of the fluctuating density alters the defi­

nition of the Rotta and Fast terms slightly; however, their essential 

character is preserved in making this analogy. 

4.10 Magnitude of the Pressure-Strain Terms 

It is customary to propose models for each part of the pressure­

strain tensor separa~ely, and then use them in combination to replace 

the total pressure strain tensor. The performance of the model is then 

judged indirectly by its effect on measurable quantities, such as the 

stresses or the mean velocity. 
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l\e find ourselves in the fortunate position of being able to 

directly calculate these pressure-strain terms and compare models to 

them immediately. t..e decomposE~ these terms in the manner suggested by 

Eqs. (4.9.2) through (4.9.4). 

~ying expected the compressible part to be small in comparison to 

the Rotta and Fast parts, we are surprised to find it of the same order 

of magnitude as the others. As a measure of the magnitude of this part 

of the tensor, we form the second invariant and divide it by the sum of 

the second invariants of the Rotta and Fast parts. Wa performed a 

least-squares fit to this quantity, to look for the important parameters 

in its development. In Fig. 4.20, we show this ratio of invariants 

plotted against the least-squares fitting function. The fitting func­

tion and the determined constants are also shown. There is a positive 

dependence on both the shear number and on the fluctuating Mach number. 

Recall from Section 4.1 that the product of these two parameters is the 

shear Mac.h number. It seems as though the magnitude of the compressible 

part of the pressure-strain term probably scales on this "external flow­

like" Ma.ch number. In these simulations, the magnitude of this term 

seems to vary almost linearly with the shear Mach number, as indicated 

by the exponents a and b. 'Ibis term will become important in mixing 

layers and boundary layers in which the Mach number difference across a 

large eddy becomes greater than one. 

It will be useful to deseribe the procedure used to verify this 

result. The procedure used involves the direct calculation of the first 

three terms in (4.9.2). The fourth, the compressible source term, is 

calculatled by difference. Equation (4.9.2) is analytically satisfied by 

the flow field. It is numerically satisfied if the same method of spa­

tial derivatives is used for it as for the original simulation. t..e have 

used pseudo-spectral derivatives in all cases as described earlier, for 

numerical consistency. 

The "compressible" part of the pressure will be very small in a 

low-Mach·-number isotropic flow. t..e know that, at low Mach numbers, this 

flow is virtually incompressible. In the simulation labeled IH64A, we 

calculat4:!d the ratio of the pressure fluctuations for a flow field at 

the end of the computation, when the fluctuating Mach number was less 
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than 0.03. The second portion of the pressure does not exist in this 

flow, as there is no mean velocity gradient. we found the ratio of the 

squares of the fluctuating pressures to be 

= 0.0056 (4.10.1) 

This is quite small, consistent with our hypothesis. 

The third source term was calculated from the divergence of the 

momentmn equations. As a check, we evaluated g3 in an independent 

way. From (4.8.2) and (4.8.3), it can.be seen that this source term is 

the second time derivative of the density. The code is run two time 

steps to produce three consecutive flow fields, and a2/at2p was then 

approximated by a three-point central difference formula. we then found 

this ratio of pressure fluctuation to be 

= 0.0050 (4.10 .2) 

iin good agreement with (4.10.1). The magnitude of (4.10.2) is slightly 

less than (4.10.2), as might be expected, because of the high wave 

number dissipation inherent in the three-point formula. 

This confirms that our hypothesis and method of calculating the 

pressure is correct. At very low Mach number, the compressible part of 

the pressure disappears and, with it, its contribution to the pressure­

strain terms. 

In order to find out what physical mechanism was responsible for 

the size of P3' we applied the chain rule to the source term g3 and 

calculated four pressure fields that comprise P3 • 

a a a a 
U i at P,i + Pili at ui + ui,i at P - P at ui,i = 

(4.10.3) 

This was done in the simulation HS64D at St = 6.0. Wa again formed the 

fluctuating pressures and found that the last term in (4.10.3) was re­

sponsible for more than 95% of the P3 pressure field. The other three 

terms are insignificant. This indicates that the third or compressible 

part of the pressure field is a result of the velocity dilatation in the 

flow field and not a result of variations in density. 
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4.11 M:>cieling of the '~composed Pressure-Strain Terms 

In this section we discuss and evaluate models for the three compo­

nlents of the decomposed pressure-strain tensor. 

4.11.1 Rotta Pressure-Strain Term 

The Rotta pressure-strain term, 1 <Pij' was first identified by 

Rotta (1'951). The pressure field associated with this tensor results 

from intleractions of the turbulent velocity field with itself. It may 

thereforE! exist in a flow which has no mean velocity. In a flow with no 

tlUrbulenee production, this term is thought to be responsible for the 

experimentally observed return to isotropy of the Reynolds stresses. 

In order to model this part of the pressure strain tensor, Rotta 

r,elated the 1 <Pij to the stress anisotropy, bij , by reasoning that 

the effect of the model should stop when isotropy is reached. He pro-­

posed thE! simplest model that is linear in bij • 

(4.11.1) 

where £ is the isotropic part of the dissipation defined as 

(4.11.2) 

Although Rotta proposed this model solely as a replacement for <Pij' we 

shall show that there are other terms that should be combined with the 

Rotta term and modeled this way. v.e can also make an estimate of the 

value of c1' 

Conidder the time-dependent equations for the Reynolds 

stress anisotropy tensor, in a homogeneous flow with no turbulence pro­

duction (no mean velocity gradient). We do this to isolate the effects 

of the Rotta term only. In this relaxing flow, there is no fast 

pressure--strain term, 2<Pij' but the pressure-strain tensor remains the 

slUm of the Rotta part and the compressible part. Wray (1980), however, 

has shown that the velocity dilatation quickly becomes insignificant in 

a relaxing, compressible, homogeneous flow and therefore the pressure'­

strain t,ensor. in this flow, iEl almost entirely due to the Rotta term. 
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In addi tion, the trace of 

neglected for this case. 
4>ij is small, so its dissipation may be 

Manipulation of the Reynolds stress equations produces the Reynolds 

stress anisotropy equation. 

(4.11.3) 

where we have used dij for the dissipation anisotropy, defined by 

(4.7.2) and assumed that 4>ij is traceless. 

In (4.11.3) the term in square brackets can alter the relative mag­

nitudes of the elements of bij , i.e., it has redistributive behavior 

and is responsible for the return to isotropy. The last term cannot do 

this. This indicates that the entire bracketed term should be replaced 

by a model rather than just the pressure-strain term. 

If we use the Rotta model, (4.11.1), to replace [14>ij - 2e:dij], 

we find 

= (4.11.4) 

For bij to relax to isotropy, c1 must be greater than two. 

Thus it makes sense to use the Rotta term in place of the term in 

square brackets. The constant will be evaluated for both applications. 

l..e are able to directly calculate the constant c1 from our simu­

lated flow fields. All three pressure-strain tensors exist in the homo­

geneous shear flow, so we calculate the Rotta pressure-strain term by 

(4.9.2) through (4.9.4). 

In Iable 4.5 we show the value of the constant c1 for each of the 

four nonzero Reynolds stress equations. Note that, for both applica­

tions, c1 is not a constant. It varies among the Reynolds stress 

equations and has a spread of values for each equation alone. l..e fit 

the constants, c1' calculated from each flow fields with the following 

two equations: 

(4.11.5a) 
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(4.11.5b) 

in hopes of determining which nondimensional parameter varies with the 

constant. The 2 appears in the first fitting function because c1 

should approach 2 (no return to isotropy) at zero Reynolds number, at 

least for the case where the dissipation anisotropy is included. This 

argument is discussed in Lumley and Newman (1977) and motivated the 

first form. t..e were unable to find a suitably ,converged set of con­

stants for this equation, which led us to the second form in (4.11.5), 

which we found to be a better fit to the data. These results are pre­

sented in Table 4.5. 

From the values of the fitted constants in Table 4.5 it can be seen 

that the shear number is important in determining the variation of c1 • 

It seems as though the mean velocity gradient has an indirect effect on 

the strUl~ture of this term. 

The values of Table 4.5 are shown graphically in Figs. 4.21 and 

4.22. Figures 4.21 and 4.22 are actually four plots in one. t..e deter-

mined the constants in Eq. (4.11.5b) by least squares. \oe then used 

these constants in (4.11.5b) to make an estimate of c1 in each flow 

field. \oe divided the predicted value by the actual value and plot this 

ratio on the ordinate. If the least squares were perfect, this value 

would be one. For clarity ~ we shift the origin for each plot by 

successively adding two to the results from each of the four stress 

equations _ The results for the i = 1, j = 1 equation appear at the 

top of the plot beside the number 7. <A1 the abscissa we plot the 

corresponding values of c1. lie may then visually compare the range in 

v,alues of c1 and the accuracy of the fitting function for the four 

stress equations. 

If the model were a perfect representation of the terms it re­

places, the figures would have only four points, each immediately aboye 

the others, at a common value of c1- However, the horizontal spread of 

values shows the variation of c1 in each E~quation, and the vertical 

spread shows the adequacy of the least-squares fit. 

The values of c1 for the case where the dissipation anisotropy is 

included are, within the variance, greater than two, consistent with the 
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requirement for return to isotropy. For the simple Rotta model, this is 

not true. (Note that, when c1 is evaluated from experiment, the dis­

sipation anisotropy is usually included with the Rotta term by default, 

because the dissipation is assumed to be isotropic. Thus the resulting 

models are fairly accurate, even though some of the assumptions are not 

correct.) 

In the relaxing, homogeneous simulations of Rogallo, c1 is cal-

cula ted to be cons tant at a value of about 2.37. The values of cl 

calculated by Schumann and Patterson (1975) are of the same order of 

magnitude as we calculate for the simple model. They do not include the 

dissipation anisotropy in their analysis. The incompressible, homogene­

ous shear simulations of Shirani (1981) also show a variation of c1 

when the Rotta term is calculated directly. It seems as though the 

Rotta model breaks down in the shear flow. 

Bearing this in mind, we have looked at some arguments about the 

variation of c l • Various workers have recognized that c1 is not a 

constant and have proposed arguments as to how it should vary. Lumley 

and Newman (1977) argue that c l should be a function of the Reynolds 

number and the two nonzero invariants of the stress anisotropy tensor. 

They propose the equation 

2 + e 
-a/Re l /2 

L 7~/2 + b .R.n(l + c(dIII - II» ( } + 3Il1 + II) 
Re L (4.11.6) 

They chose the form of this function by determining how c l should 

anisotropy behave in the limits of zero and infinite Re and 

invariants. The equation is simply an interpolation between these 

limits. ~ performed a least-squares fit to the four constants in 

(4.11.6) and present these data along with error estimates in Table 

4.6. ~ were unable to find a converged set of constants for the i = 
3, j = 3 equation, but found reasonable values for the other three. 

The values that Lumley proposes are also included. The quantitative 

agreement with his constants is not good, but they are all of the same 

order of magnitude. 

Chung and .Adrian (1979) use a similar argument to propose the 

fitting equations: 
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1T = 

2 + 1T(II,III) 
ll(Re

L
) 

all e(-bII) (1 _ dIII1/ 3 + e lll ) 

l.l = 1 + f Re~1/2 

(4.11.7) 

W:! were unable to find a converged set of constants for this equation. 

A slmpler suggestion by Lumley and Newman (1977) does not depend on 

the stress invariants. 

= 2 + A Re-1 / 2 
L (4.ll.8) 

Tclble 4.7 shows the values of A that we calculate from the shear flow. 

Note the variation and especially the change of sign. 

t-.e have to conclude that the Rotta model (4.11.1) is inadequate to 

represent: the Rotta and dissipation anisotropy terms, when analyzed by 

this method. The constant c1 is a function of i and j and perhaps 

should bE! a tensor. As previously stated, the Rotta model is linear in 

b jlj • Perhaps higher-order terms in bij should be investigated that 

would represent this variation with a scalar constant. t..e suspect that 

the Poisson decomposition is at fault and that perhaps the Rotta model 

is not as bad as this analysis shows. t..e shall return to this model 

when we a.ttempt to model the entire pressure-strain tensor. 

4.11.2 Fast Pressure-Strain Term 

The Fast portion of the pressure-strain tensor was recognized by 

Rotta (1951), but its name is due to Lumley (1978). It arises from 

interactlons between the turbulence field and the mean velocity gradi-· 

ent. Many workers have proposed models for this term which have grown 

in sophistication over the years. Modern models are generally construe-· 

tE!d from combinations of bij , but there i,s some controversy as to 

whether these models should be linear or of higher order in bij 
(Lumley, 1978). 

The reasoning that leads to the use of bij in these models was 

given by Lumley (1974). Assuming incompressible homogeneous flow, WE~ 

may writE! the Fourier transform of the fast part of the pressure as 
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= 
-ik.ui J U 

k2 j,i 
(4.11.9) 

The pressure-strain term is written as an integral in Fourier space. 

Inserting (4.11.9) into (4.11.10) and remembering that 

stant, we find 

u. i J, is a con-

(4.11.11) 

Equation (4.11.11) is an exact representation of the fast term for an 

incompressible homogeneous flow. It shows that the fast term is com­

posed of a fourth-rank tensor multiplied by the mean-velocity gradient. 

Models for this term approximate the fourth-rank tensor because we 

cannot directly evaluate the integral. Note that the integrand is comr 

posed of Fourier-space representations of the Reynolds stress. This 

justifies constructing models for the tensor from combinations of the 

bij" 

The most sophisticated model in use is linear in bij • It has been 

derived in several forms by various workers, but all are essentially the 

same. ~ shall discuss the form found in Reynolds (1976). The tensor 

GijkJl. is approximated by linear combinations of bij , each term 

multiplied by its own undetermined constant. Constraints implied by 

(4.11.11) eliminate all but one of these constants, which must then be 

determined empirically. When combined with the mean-velocity gradient, 

UJI.,k' the model is 

(4.11.12) 
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i + u. i) Sij = "2 (Ui . 
,J J, 

Qij 
1 - u. i) = 2" (Ui,j J, 

1111s is e:xactly the form used by Hanjalic and launder (1974). 

For the homogeneous shear flow, the four nonzero terms are: 

2<P11 = - (is i\ +})O' 

2<P22 = (}i\+~)tf 
(4.11.13) 

2<P33 = (- } A1)(f 

2<P12 = 1 2 (8 2) 2 (1 2) 5' (1 +i\) Spq - 15 A1 + '3 S < pU1 > - 15 i\ - '3 s < 2 pU
2 > 

As with the Rotta term, we can directly calculate the value of the 

constant A1 from our simulations. Table 4.8 shows the value of AI. 

for the four nonzero Reynolds stress equations. It can be seen that the 

average value of varies among the four equations, but that the 

v8lriance of A1 is quite small relative to the average for three of the 

four. The values calculated for the R33 term have some scatter due to 

the small value of b33 , and are less reliable. lie present them for 

completeness. 

To look for variations of the constant with the nondimensional 

p8lrameters, we have least-squares fit the constants A1 from each of 

the four equations with the function 

= 
a 

d ( _qS~) (1 + bM2) (1) ) c "e). (4.11.14) 

le have chosen this form rather arbitrarily to look for power-law 

vl::lriations of ~ with shear and Reynolds numbers and because we do not: 

eJl:pect A1 to disappear with Mach number. There have been arguments 

proposed that this "constant" should vary with the stress anisotropy 

also (Lumley, 1978). There is no clear indication I of how it should 

bE!have in the limits of zero and infinity for the shear and Reynolds 

number and for the invariants, and therefore no function has been 
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proposed. we justify (4.11.14) solely by the accuracy of the fit shown 

by the small rms error in Table 4.8. Figure 4.23 presents the con­

stant A1 in the same manner used
0

to present the Rotta model constant. 

The constants are quite constant for each equation, leading us to 

suspect that much of the important physics is captured by this model. 

However, the average value still varies from equation to equation. 

Improvements still need to be made, perhaps along the lines suggested by 

Lumley (1978), where he discussed Schumann's (1977) concept of realiz­

ability. 

A simplified version of this model has found favor among some 

workers. It is known as the Gibson-Launder model, and is 

where 

= (4.11.15) 

and 

where 6' is the rate of turbulence energy production per unit volume. 

For the homogeneous shear flow, 

= ~ j ~ tp 
= 14>33 

2 rP 
3~ (4.11.16) 

A2 
2 

= < pU2 > S 

The values of ~ are presented in Table 4.9 and graphically in 

Fig. 4.24. This model does not perform as well as the more general 

fourth-rank tensor model from which it is derived. One problem is the 

equality of the model for 2h2 and 24>33' There is no reason why 

these terms should be equal, and there is evidence that they are not 

(Champagne et a!. (1970) and Harris et a!. (1977), but the model is 

incapable of representing this. It seems as though some essential 
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physics has been left out by the simplification, and we would therefore 

prefer the more general model (4.11.12) over the Gibson-Launder model 

(4.11.15) • 

In hopes of improving the fourth-rank tensor model, we have added 

terms in.volving dij , the dissipation anisotropy. This addition is 

motivated by our experience with the Rotta term and also by the appear­

ance of the integrand in (4.11.11). The wave numbers multiplying the 

velocities represent spatial derivatives and appear similar to the 

Fourier space representation of the dissipation tensor. 

We added terms linear in the dissipation anisotropy dij into the 

model (4.11.12). \-e applyed thE! kinematic constraints discussed in Rey­

nolds (1976) and also in Lumley (1978). Writing the model for the shear 

flow, we have: 

where 

2~11 

2~22 

2~33 

2~12 

DiO .J 

= 

= 

= 

(1~ 1\ +}) f'+ «(:2 + 2c3 ) 
D12 2 
-e- sPq 

- ( j 1\ + })tf-
D 

2 
(3c

2 + 8 ) 12 c 3 -e- spq 

D 
2 ~ ~ rP+ c -E. 5 2 e spq 

1 8 + 2 s < 2 > '5 (1 + ~) spq2 IT~ pU
1 1" 

1 2 
s < 2 2 2c

3 
2 (4.11.17) - TI A1 -3 pU2 > + 3 c 2 + sPq 

- (2C2 + 4c3 ) 
Dl1 2 + 

D22 2 
e sPq c3 --e- sPq 

is the dissipation tensor (Drj of Eq. (4.7.2». Note the 

appearanc::e of three undetermined constants, A1 , c2' c3' To determine 

these constants we did a least-'squares fit to 2<Pij' using (4.11.17). 

'l1tle results of this fit appear ln Table 4.10. 

The constant A1 which mUltiplies the same terms as in the origi­

n.a! model (4.11.12) varies much less from equation to equation than it 

does in the case where d ij is not included. This is an improvement. 

H:>wever, c2 and c3 do not appear to be constants at all (c2 and 

c:3 were determined simultaneously in the R11 and R22 equations and 

are therefore equal). We therefore do not expect this model to be an 

improvement over (4.11.12). 
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There are serious objections to the form that the fourth-rank ten­

sor model takes (Leslie (1980) and Lumley (1978», but in the absence of 

any demonstrably better model we would use (4.11.12) with carefully cho­

sen individual constants for each Reynolds stress equation. 

4.11.3 Cbmpressible Pressure-Strain Terms 

The pressure strain terms associated with the compressible part of 

the pressure can be thought of as a deviation of the compressible terms 

from the equivalent incompressible terms. 

In seeking a clue as to how they behave, we plotted the ratios of 

the individual terms in 3~ij to the corresponding terms in the Rotta 

and fast parts of the pressure-strain tensor. W:! noted that 3~ij is 

similar to the fast tensor 2~ij' The ratio of these two terms seems to 

be a function of the shear Mach number SL/c, as shown in Figs. 4.25a 

through 4.25d, where we have plotted the ratio 3~ij/2~ij for the four 

nonzero components vs. SL/c. This trend may be seen in all except the 

i = 2, j = 2 term, where we see too much scatter to draw conclusions. 

W:! are led to suspect that the models for the fast term may be appli­

cable to the compressible term. 

We applied the most successful model (the general fourth-rank ten­

sor model) for the fast pressure-strain terms to the compressible term. 

The results are shown in Table 4.11 and Fig. 4.26. By comparison with 

Table 4.4 and Fig. 4.23, it can be seen that the compressible terms 

behave in much the same way as the fast terms. 

Since these two tensors are quite similar, we thought that their 

sum should be modeled. Applying the fourth-rank tensor model to 2~ij 

+ 3<Pij' we find the results shown in Table 4.12 and Fig. 4.27. The 

average value of A1 does not vary as much among the equations as when 

applied to the compressible terms alone. 

We evaluated several other models for these terms, including the 

Rotta model and the fourth-rank tensor model with the dissipation aniso­

tropy terms, but found none that performed as well as the original 

fourth-rank tensor model. 
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4.11.4 Conclusions for llideling of the Decomposed Pressure Strain 

Tensor 

Using the simulated flow fields, we decomposed the pressure field 

by means of a Poisson equation. This is a standard decomposition used 

in incompressible flow modeling and is used to give insight into con­

structing models for the pressure-strain terms. t-.e carried out this 

de!composition in the compressible flow to relate existing pressure­

strain models to the "exact" terms. 

l..e found three components instead of the two found in incompress­

ible flows. The third component we labeled the compressible pressure­

strain terms and regarded it as a deviation from incompressible flow. 

t-.e E!valuated models against: the exact terms, but found variations 

in the values of the constants. On the basis of these calculations, we 

would recommend the use of the Rotta model to replace both the Rotta 

tE!rm and the dissipation anisotropy. l..e recommend the use of the 

fourth-rank tensor model to replace the sum of the fast and the com­

pressible. pressure-strain terms. 

However, we have reservations about the validity of this Poisson 

dE!composition in a compressible flow. As discussed in Section 4.8, the 

pressure is a hyperbolic quantity, not elliptic as in the incompressible 

flow. A Poisson equation introduces an elliptic character into the 

pressure and is perhaps incorrect in a compressible flow. This leads us 

to two approaches described in the next two sections, where we first 

look into decomposition of the pressure by means of a wave operator. t-.e 

then evaluate several models for the entire pressure-strain tensor with-· 

out decomposition. 

4 .. 12 Wive-Operator Decomposition 

Becamse the Poisson decomposition is mathematically incorrect in a 

c()mpressi.ble flow, we have investigated the use of a wave operator. \\e 

rE~write E:q. (4.8.3) 

2 
V2p a P _ - -::z- -at -;:: 

(4.12.1) 
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where gl and g2 are the Rotta and fast source terms defined in 

Section 4.8. Ideally, we would like to calculate two pressure fields 

corresponding to the source terms gl and g2. ~ would then combine 

them with the fluctuating strain-rate tensor in the manner of (4.11.10), 

to form a Fourier space representation of two pressure-strain tensors. 

Equation (4.12.1) is a nonlinear wave equation which we cannot directly 

solve. HOwever, we can retain the hyperbolic character of (4.12.1) by 

approximating the sound speed c as a constant, leaving a linear wave 

equation. 

Setting c = co' a constant, and Fourier transforming (4.12.1), we 

find: 

= (4.12.2) 

For each source term gi' the general solution of (4.10.2) is 

Pi(k,t) 
ikc t -ikc t 1 t A 

P1e 0 + P2e 0 + kCof sin(t-t')gi(t') dt' (4.12.3) 

~ are unable to explicitly evaluate the integral in (4.12.3). It rep­

resents history effects that would appear in the pressure-strain terms. 

This is to be expected in that the pressure is truly a flow variable 

that develops according to its own dynamic equation. It is not a result 

of a kinematic constraint, as it is in incompresible flows and therefore 

is not completely determined by the instantaneous velocity field. 

It seems that models developed from this decomposition must have 

history effects built into them. This appears prohibitively expensive 

for useful models in that the entire history of the simulation must be 

preserved to construct the pressure-strain model. It is possible that 

models could be constructed on this basis, but we abandoned it for lack 

of time. 

l\e were therefore led to look elsewhere. In the next section we 

discuss attempts to model the entire pressure-strain tensor without any 

decomposition. 
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4.13 Modeling of the Entire Pressure-Strain Tensor 

l-e have discussed our reservations about the use of the Poisson de­

composition for the pressure-strain tensor in a compressible flow. l-e 

thjen described a decomposition based on a wave operator that appears 

impractical to use. 

l-e alce led to models for the entire tensor without a decomposition. 

Thje models we evaluated follow two different lines of thought. Combina­

tions of existing models were evaluated and their constants were simul­

taneously determined. ~ also constructed and evaluated models based on 

a structural similarity assumption. First we discuss combinations of 

existing models. l-e then discuss models based on a structural similar­

ity concept. 

4.13 .1 Combinations ofExis ting Models 

In a previous section we evaluated models against the exact parts 

of the decomposed pressure-strai.n tensor. Because of our reservations 

about the decomposition, we reevaluated the constants in two sets of 

models by sumultaneously determining them. Following our tentative 

recommend,g,tions at the end of Section 4.11, we model the sum of the 

total pressure-strain tensor and the dissipation anisotropy by the sum 

of the Rotta model and a fast model. 

+ Fast model 
with constant + Rotta model 

with constant (4.13.1) 

The two constants are then determined by a least-squares fit using the 

models as a fitting function. W! did this hoping that any artificiality 

associated with the decomposition could be eliminated. 

Both the Gibson-Launder model and the fourth-rank tensor model were 

evaluated. The results are shown in Table 4.13 where we have written 

the values of the two constants and the normalized RMS error associated 

with the fit. 

The i 3, j = 3 term has a large amount of uncertainty associa-

ted with it because of the small and erratic value of the stress aniso­

tropy in this term. l-e notice, however, that the three remaining terms 
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are better approximated by the fourth-rank tensor model. (There is less 

variation of the constants from equation to equation.) Comparison with 

Tables 4.4 and 4.5, where we have written the individually determined 

constants, shows less variation in their values he take this to confirm 

our suspicion that a Poisson decomposition should not be used in the 

compressible flow. 

The combination of fourth-rank tensor and Rotta models is still the 

best one we have evaluated. Our recommendation of Section 4.ll still 

holds. 

4.13.2 Structural Similarity Models 

~en analyzing their time history, we noticed that the elements of 

the stress anisotropy tensor seemed to approach asymptotic values. This 

was particularly true for the diagonal terms, but less so for the shear 

stress. It was thought that we could exploit this fact to create a 

pressure strain model. 

As discussed earlier, it is by no means certain that the shear flow 
a comes to structural equilibrium (at bij = O).HOwever, the time rate of 

change of bij becomes small during the "good time" of the simulations, 

and we use this to justify the zeroing of (a/at)bij • This is an as­

sumption similar to that used in Rodi's (1976) algebraic stress model. 

he derive the time-dependent equations for bij from the Reynolds 

stress equations (4.7.1) and (4.7.2). Applying the chain rule to the 

time derivative of the definition of bij • 

= a Rij _ !. 0 
at ~k 3 ij 

lie can show that 

= _1_~R 
~k at ij 

1 ~R 
(R )2 at kk 

kk 

= ~ rp i . + 4>i . - Dij - 2 Ri~ (0' + ~ - £)-J 
pq L J J Pq 

(4.13 .2) 

(4.13.3) 

where Pij is the production tensor, 4>ij as the pressure-strain 

tensor, and Dij as the dissipation tensor. The turbulent kinetic 

energy production is f?, the turbulent dissipation is £, and the 
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trace of the pressure strain tensor is <P • The trace of the Reynolds 

stress tensor Rkk is pq2. 

Setting (a/at)bij equal to zero and solving for ~ij' we have 

(4.13.4) 

where we have used for the production anisotropy, defined as 

(4.13.5) 

Equation (4.13.4) gives us a form from which to construct models. To 

test the assumption that (a/at)bij = 0, we calculated the ratio of the 

right side of (4.13.4) to the left side and calculated the average value 

an.d variance of this ratio. If (4.13.4) were identically satisfied, 

this rati.o would be one and the variance would be zero. Table 4.14 

shows these results. W:! see that this assumption is reasonable for 

the i = 1, j = 1 and i = 3, j = 3 components, but questionable for 

the other two. 

W:! constructed several models by simplifying. Ignoring the trace 

of the pressure-strain tensor and using the observed fact that the dis­

sipation anisotropy is proportional to the stress anisotropy, we have 

~ij (4.13.6) 

where cl represents this proportionality. The average value of cl 

is shown in Table 4.15, along with its variance. W:! also show the re­

sults graphically in Fig. 4.29, in the same way we presented the values 

in. Section 4.9. 

There is reasonable agreement for the diagonal terms, but the off-

diagonal or shear-stress term is not well represented. 

resents the proportionality between bij and dij , 

Since c1 rep­

we know that its 

value should be about one. ~ suspect that the failure on the off-

diagonal term is due to the changing value of bl2 • As was seen ear­

lier, this off-diagonal compnent of the stress anisotropy tensor changes 

more rapi.dly throughout the "good time" than the diagonal components. 
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The failure in this term may be due to the lack of structural similarity 

in the shear stress. 

Searching for improvements to this model, we put an adjustable con­

stant in front of the first term in (4.13.6) and rewrite the equation as 

4>ij = (4.13.7) 

where the second term is written to appear like the Rotta model. Note 

that (4.13.7) looks very much like the Gibson-Launder plus Rotta models, 

but with the inclusion of bij in the first term. Table 4.16 shows the 

values of c1 and c2 determined from a least-squares fit using 

(4.13 .7) as the fitting function. i-.e again see a large variation in the 

values for i = 3, j = 3. The agreement among the other three equations 

is not good, with a four-to-one variation on c2 and two-to-one on c1. 

Perhaps models based on structural similarity would be appropriate 

for this flow, if we could carry the simulation further in time. HOw­

ever, we are limited to simulation times before the flow reaches this 

hypothetical similarity, and therefore we should not dismiss this idea. 

It deserves a reinvestigation in a more fully developed homogeneous 

shear flow. 
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Table 4.1 

NON-DIMENSIONAL GROUPS 

Computa tional Range Experimental Range 

SL -
< SL < 26.6 q 

8.5 7.8 < SL < 14.8 
Shear Number q q 

M = .9. 
c 

0.06 < M < 0.31 < 0.3 

Fluctuating Mach 

Number 

ReA = pqA 
J..l 18.4 < ReA < 120.6 133 < ReA < 398 

Taylor Microscale 
Reynolds Number 

Table 4.2 

TABLE OF SIMULATIONS 

Parameter Range 
Dt~s:i.gnation Type SL/q M = q/c ReA 

IH64A Isotropic 0.0 0.078-0.034 15.0-40.0 

A. HS64A Shear 22.0-25.8 0.064-0.065 18.4-23.3 

B. HS64B Shear 9.7-12.5 0.144-0.146 30.1-39.0 

c. HS64C Shear 8.5-11.1 0.312-0.316 40.7-53.3 

D. HS64D Shear 13.1-14.9 0.207-0.222 43.6-56.7 

F. HS64F Shear 24.0-26.6 0.238-0.262 54.9-77 .7 

G. HS64G Shear 9.9-13.3 0.268-0.273 29.3-37.9 

H. HS64H Shear 10.7-11.4 0.250-0~2.82 93.8-120.6 
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Table 4.3 

INVARIANTS OF THE REYNOLDS STRESS ANISOTROPY TENSOR bij 
SL a 2 

Fitting function: f = d (q-) {l+bM ){ReA)c 

II: 

a = 0.54 

b = 0.61 rms error = 0.048 

c = 0.19 

d = 0.01 

III: 

a = 1.27 

b 2.37 rms error = 0.010 

c = 0.55 

d = 0.001 

Table 4.4 

INVARIANTS OF THE DISSIPATION ANISOTROPY TENSOR dij 

( 
SL a 2 c 

Fitting function: f = d q). {l+bM )(ReA) 

II: 

a = 0.688 

b -2.079 err = .072 

c = 0.334 

d = 0.008 

III: 

a = 1.787 

b = -6.142 err = 0.024 

c = 1.473 

d < 0.001 
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Table 4.5 

ROTTA MODEL EVALUATION 
.. a 

Fitting function: f = d (!L) (l+bM2)(Re X)d 

Rotta'Term Alone (<l>ij): 

l~quatiQn cl a b. c d 

1 = 1, j = 1 1.114 :l- 0.723 -1.519 -3.763 0.912 1.949 

Jl = 2, J = 2 1.730 ± 0.899 -0.776 3.614 0.674 0.762 

1 = 3, j = 3 0.680 :l- 0.583 -1.965 -7.352 1.226 1.481 

:l = 1, j = 2 1.559 ± 1.090 -0.592 -2.311 1.219 0.067 

Rotta Term with Dissipation Anisotropy (<l>ir2e:dij): 

:l = 1, j = 1 

:l = 2, j = 2 

i = 3, j = 3 

jL :;: 1, j = 2 

Eq\,1atiQrL 

j[ = 1, jI = 1 

1 = 2, J = 2 

t .=:.1, jj :;: 2. 

2.886 ± 0.722 -0.458 -2.840 0.443 2.059 

3.727 ± 0.824 -0.352 0.105 0.325 2.652 

1.719 ± 0.921 -0.126 -4.981 1.059 0.053 

3.035 ± 1.1.22 -0.294 -2.252 0.725 0.445 

Table 4.6 

CONSTANTS IN LUMLEY'S FITTING FUNCTION 

FOR THE ROTTA CONSTANT 

(See Eq. (4.9.6» 

a b c. d 

7.795 24'h196 21.233 -5.81 

4.275 152.380 21.765 -1.842 

9 ..• 191 525.294 2.106 .31.064 . 

Lumley predicts a = 7.77, b = 80.1, c = 62.4, d = 2.3. 
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Error 

0.049 

0.074 

0.119 

0.079 

0.057 

0.049 

0.154 

0.057 

rms 
E;rr9,r, ,. 

0.067 

0.043 

0.054 



Equation 

i = 1, j = 
i = 2, j = 

i = 3, j = 
i =.1, j = 

i 

i 

i 

i 

Table 4.7 

LUMLEY AND NEWMAN'S FITTING FUNCTION 

FOR THE ROTTA CONSTANT 

f = 2.0 + a Re1/ 2 

(See Eq. (4.9.8» 

Equat:t.on a rms Error 

= 1, j = 1 1.682 0.334 

= 2,. j = 2 3.681 0.376 

= 3, j = 3 -1.550 0.411 

= 1 - - .. , j= 2 1.624 0.439 

Table 4.8 

GENERAL FOURTH-RANK TENSOR MODEL 

Fitting function: f = d (!L)a (1+bM2)(Re A)c 

(See Eq. (4.9.8» 

.. A1 a b c d 

1 -4.090 ± 0.173 0.088 -0.225 0.061 -2.595 

2 -2.134 ± 0.052 0.073 0.799 -0.001 -1.930 

3 -0.482 ± 0.147 -0.701 -3.593 -0.333 -13.190 

2 .",,:1~153 .±O.O9:8 0.190 ..,.0.675 0.030 -0.642 
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rms 
.. Error 

0.010 

0.014 

0.088 

·0.02.~ 



Table 4.9 

GIBSON/LAUNDER MODEL FOR FAST TERM 

Fi i f i '.f' = d (SL)a (l+bM2)(Re,)C tt ng unct on: L 1\ 
. q 

Equation A2 a b c d 

:i. = 1, J = 1 0.324 ± 0.061 --0.423 0.707 -0.274 2.673 

:i = 2, j = 2 -0.134 ± 0.052 0.471 48.117 -0.156 -0.020 

:i. = 3, j = 3 0.289 ± 0.088 -,0.701 -3.592 -0.333 7.914 

:i = 1, j = 2 0.198 ± 0.029 0.000 -0.705 -0.236 0.501 

Table 4.10 

GENERAL FOURTH-RANK TENSOR WITH 

DISSIPATION ANISOTROPY TERMS FOR FAST TERM 

Equation Al C2 C3 

i = 1, j = 1 -1.818 1.624 0.612 

i = 2, j = 2 -2.221 1.624 0.612 

i = 3, j = 3 -1.926 0.403 0.0 

i = 1, j = 2 -1.731 0.132 -0.055 
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rms 
Error 

0.047 

0.179 

0.088 

0.059 

rms 
Error 

0.033 

0.016 

0.217 

0.011 



Table 4.11 

COMPRESSIBLE PRESSURE-STRAIN TERMS 

General Fourth-Rank Tensor Model 

(Compressible terms alone) 
. a 

Fitting function: f = d( :L) Mb(ReX)c 

Equation Al a b c d 

i = 1, 

i = 2, 

i = 3, 

i = 1, 

j = 1 -3.962 ± 0.199 -0.015 -0.111 0.095 -2.397 

j = 2 '-1.989 ± 0.076 -0.101 -0.083 0.034 -1.995 

j = 3 -0.678 ± 0.138 -0.430 0.071 -0.232 -5.663 

j = 2 -1.228 ±0.094 0.208 0.060 -0.033· -0.882 

Table 4.12 

COMPRESSIBLE PRESSURE-STRAIN TERMS 

General Fourth-Rank Tensor Model on Compressible and 

Fast Pressure-Strain Terms 
. a 

Fitting function: f = d .(:L)' (l+bM
2

)(Rex)c 

Equation Al a b c d 

i = 1, j = 1 -3.052 ± 0.323 0.121 -1.889 0.167 -1.302 

i = 2, j = 2 -2.123 ± 0.068 -0.054 -0.065 0.009 -2.369 

i = 3, j = 3 -1.160 ± 0.261 -0.556 -1.232 -0.262 -14.409 

i = 1 j =2 .. .,..1.388.i;·0 •. 069·.· ·.·0 ... 07-3.·.· ·.0 .• .5·92··.· -0 .• 065. .-.1.418.·.· , 
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rms 
Error 

0.032 

0.020 

0.093 

0.033 

rms 
Error 

0.056 

0.025 

0.070 

0.034 



i 

i 

i 

i 

i 

i 

i 

Table 4.13 

SIMULTANEOUSLY DETERMINED CONSTANTS FOR THE TOTAL 

PRESSURE-STRAIN TENSOR PLUS DISSIPATION ANISOTROPY 

Equation 

= 1, j = 1 
=: 2, j = 2 

= 3, j = 3 
_. 1, j = 2 

Equation 

=: 1, j = 1 

= 2, j = 2 
_. 3, j = 3 

Modeling of (~ij - 2€dij ) 

Gibson/Launder + Rotta Models 

Fast Const Rotta const 

0.334 3.234 

0.022 3.106 

1.122 -4.571 

0.426 0.899 

Fourth-Rank Tensor + Rotta Models 

Fast const Rotta const 

-3.332 3.234 

-1.978 3.106 

-1.869 -4.571 
I 

rms Error 

0.120 

0.099 

0.163 

0.057 

rms Error 

0.325 

0.042 

0.163 

i = 1, j = 2 ! -1.500 2.074 0.020 
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Table 4.14 

TEST OF STRUCTURAL SINILARI'IY 

rms 
Equation C1 a b c d Error 

i = 1, j = 1 0.868 :I: 0.067 -0.120 0.475 0.045 0.979 0.045 

i = 2, j = 2 0.616 ± 0.208 -0.078 10.25 -0.062 0.618 0.257 

i = 3, j = 3 0.944 :I: 0.09 -0.207 -0.862 0.089 1.214 0.054 

i = 1, j = 2 1.381 ± 0.268 0.379 0.403 0.212 0.218 0.099 

Table 4.15 

STRUCTURAL SIMILARI'IY MODEL 

a 
Fitting function: f = d (!L) (1+bM2)(Re A)c 

rms 
Equation. C1 a b c ... d Error 

i = 1, j = 1 1.005 ± 0.170 -0.012 -2.811 -0.038 1.411 0.125 

i = 2, j = 2 1.340 ± 0.202 -0.069 -2.564 0.218 0.813 0.118 

i = 3, j = 3 0.920 :I: 0.452 0.873 3.833 0.006 0.071 0.318 

i = 1, j = 2 0.023 ± 0.529 10.570 -224.900 -4.53 0.0 0.649 
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Table 4.16 

STRUCTURAL SIMILARITY MODEL 

<l>ij = S. d'(b
ij 

- Pij ) - C2£b
ij

), see Eq. (4.12.6) 

Equation C1 ~ rms Error 

jl = 1, j = 1 0.977 0.128 0.057 

jl = 2, j = 2 0.480 0.217 0.210 

1. = 3, j = 3 1.201 -0.946 0.056 

. jl = 1 .. ... , j .~ 2 .. 1.454 0.245 0.204 
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Chapter V 

CONCLUSIONS AND RECOMMENDATIONS 

While much turbulence research has been done in incompressible 

flows, most turbulent flows of technological interest are compressible. 

KnowledglE! about turbulence modeling gained from incompressible studies 

has been widely used in compressible simulations, sometimes with excel­

lent results and other times with failure. Because measurements in 

high-speed flows are so difficult, little is known about the structure 

of the RI~ynolds stresses and their dynamic equations in these cases, and 

consequently there is little guidance on how to construct turbulence 

models. 

To study these stresses, we used the power of a large, modern 

VIE!ctor c.omputer to simulate directly the full, compressible Navier·­

Stokes equations, with no turbulence model. By using the computer in 

this way, as a "numerical wind tunnel," we were able to measure turbu·­

lienee quantities that are of pa.rticular interest to modelers. Some of 

these quanti ties, for example the pressure-strain terms in the Reynolds 

stress equations, cannot be di.rectly measured by experimental means. 

This typ.~ of simulation allows these terms to be directly measured and 

studied for the first time. 

To this end, we chose a simple, homogeneous shear flow that is an 

approximation to a small part of a more complicated shear flow. lo.e have 

extended and developed incompressible techniques for the simulation of 

compress:tble homogeneous flows with a general mean-velocity gradient. A 

code that runs on the ILLIAC IV computer was constructed to implement 

these techniques. After thorough testing, eight complete 64 x 64 x 64 

mlesh size simulations were performed, and the resulting simulated flow 

f:ields were used as a data base in which to study turbulence quantities. 

Sevl~ral measures of the structure of the Reynolds stresses were 

used to compare the simulated stress tensor to measurements from experi·­

m,ent. Agreement was good, with little indication that the stresses in 

compressible shear flows are significantly different from the incompres·­

s:Lble case. 
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A spectral decomposition originally due to Moyal (1951) was im­

plemented and extended numerically to divide the velocity field into 

"incompressible" and "compressible" parts. lE found that the stresses 

arise primarily from the incompressible part of the velocity field, in 

agreement with Morkovin's (1962) hypothesis that compressibility has but 

a small effect on these stresses. 

Although the question of whether or not a homogeneous shear flow 

comes to a state of structural equilibrium is yet unresolved, we find an 

indication that these shear flows are tending toward similarity, as 

defined by constant values of the stress anisotropy tensor. toe are 

unable to carry the simulations far enough in time to see this state, 

but the time histories of the anisotropies seem to indicate this. This 

has an important bearing on the construction of some of the turbulence 

models that we have evaluated. 

It is known that the performance of incompressible turbulence 

models deteriorates at high Mach number. 'lb search further for this 

effect, we studied the Reynolds stress equations and evaluated models 

for the various terms. 

In a compressible flow, the trace of the pressure strain tensor is 

not zero. Wlthout direct measurement, it cannot be told from the 

turbulent kinetic energy equation whether this term is productive or 

dissipative. toe find it to be dissipative. This is an effect that is 

not represented in current kinetic energy equation models, but perhaps 

it should be. 

To gain insight into pressure strain-term modeling in incompress­

ible flows, these terms are symbolically decomposed into two parts, the 

Rotta and the Fast terms. This decomposition is not actually performed 

but is simply used to justify the construction of models for each part. 

toe performed this decomposition numerically for the first time and were 

able to evaluate the individual terms directly. 

In compressible flow we found that this decomposition produces 

three parts. Because the third part represents the deviation of the 

pressure-strain tensor from the incompressible case, we call this third 

part the compressible term. It was found to be of the same order of 

magnitude as the Rotta and Fast terms, and therefore it must be modeled. 

93 



Models were separately evaluated for each part of the pressure 

strain tensor. W:! found that the Rotta model performs much better when 

used to replace the sum of the Rotta pressure-strain term and the dis­

sipation anisotropy, and would recommend that it be used this way. 

Several models were evaluated for the Fast and compressible terms, 

lol'ith varying degrees of success. Although its performance must be 

significantly improved, the general linear fourth-rank tensor model 

performs the best. There are significant mathematical objections to its 

Ulse, but until more sophisticated models are developed we would recom­

mend its use, with carefully chosen constants for the sum of the Fast 

a.nd Compressible terms. 

We found that the constants that must be determined for use ln 

these models are more uniform if they are determined simultaneously from 

the total pressure strain tensor. W:! suspect that individual determina­

t.ion of the constants from the decomposed pressure-strain field is not 

a.dvisable and recommend their simultaneous determination. 

A class of models based on structural similarity was proposed for 

the entIre pressure-strain tensor. These models show promise but need 

to be studied in a more fully developed turbulent flow. 

The dissipation tensor was found to be very anisotropic. \-e 

searched for a dependence of this anisotropy on the Reynolds number and 

found a positive relation between the two, indicating that the dissipa.­

tion is not necessarily isotropic at higher Reynolds number in a per­

Eiistently sheared flow, as was thought. This important result may alter 

t.hinking about the structure and the modeling of the dissipation terms, 

"II/hich are normally considered to be isotropic at high Reynolds numbers. 

The results of this work have fallen primarily into two categories: 

results that bear on all turbulent shear flows and results that pertain 

only to compressible shear flows., W:! have identified some differences 

that occ:ur in compressible flows and evaluated models for both new and 

old terms. 

flows. 

However, much that we have studied applies to all shear 

We have concentrated primarily on the Reynolds stresses, but there 

is much additional work that needs to be done. 
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For further research in this area, we recommend that: 

1. The turbulent terms in the thermal energy equation be studied and 

models compared with the exact flow fields. 

2. The capability be developed to follow the flow for a greater non­

dimensional time (a larger computer?). 

3. .An exactly parallel incompressible code be developed to better 

assess the changes in the compressible flow. 

4. The method be extended for simulation of higher Reynolds number 

flows (possibly via large eddy simulations?). 

5. The method be extended for non-periodic boundary conditions (a 

compressible mixing layer would be very interesting for noise 

studies .) 

This work simply scratches the surface of the vast new area of 

direct simulation of turbulent flows. Use of the computer as a numer­

ical wind tunnel complements the use of laboratory wind tunnels and 

allows us to study turbulence in a way that has never before been pos­

sible. It will undoubtedly give us great insight when the next genera­

tion of super-computers becomes available, as it already does right now. 

It is the author's opinion that this technique will become a major tool 

in the turbulence modeler's inventory in the next few years. 
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analytic root 0 lies on the unit circle and 
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Runge-Kutta method. Linear Burgers equation. 
Courant number C = 0 (viscous terms only) _ 
vs. viscous stability number V. Analytic 
root~, Runge-Kutta root rJ. 
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core memory. Data are brought into core as a 
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of the 64 x 64 x 64 size mesh. Each mesh point 
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x, y. and z directions. 
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Fig. 4.4a. Shear stress correlation coefficients 
vs. St. Letters in the figure number 
correspond to the individual shear-flow 
s;mulations. 



~ 
~ 

" 

STRESS COEFFI C I ENTS 

uv 
uw 
vw 

e 

., 
d 

'" d 

. 
d 

N 
d 

~F-=··--·- ------- ------------....::...-:....:..=..=..-~ -

N 
d 
I 

.. 
'! 

'" '! 

., 
'! 

0 .. 
0.0 0.5 to t5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 

s.n ME 

Fig. 4.4.b. Shear stress correlation coefficients 
vs. St. Letters in the figure number 
correspond to the individual shear­
flow simulations. 

6.0 

STRESS COEFFI C I ENTS 

uv 
uw 
vw 

:' 

., 
d 

'" 0 

.. 
d 

N 
0 

~~~------.--------.====~--.. =~ 
N 

'! 

.. 
0 
I 

'" 0 
I 

., 
0 

I 

0 

I 

00 05 10 1.5 20 2.5 3.0 35 4.0 4.5 5.0 5.5 6.0 
S. TI ME 

Fig. 4.48. Shear stress correlation coefficients 
vs. St. Letters in the figure number 
correspond to the individual shear-flow 
simulations. 

6.5 



..... ..... 
co 

I uv 
uw 

. vw 

STRESS COEFFI C I ENTS 

S~I ____________________________________ ~ 

., 

.; 

'" .; 

. 

.; 

N 
.; 

~~-----------------------==~= 
N 

l' 

. 
9 

'" 9 

----------------------------., 
9 

0 
~ , 

0.0 0.5 to t5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 
S·TIME 

Fig. 4.4d. Shear stress correlation coefficients 
vs. St. Letters in the figure number 
correspond to the individual shear­
flow simulations. 

r 
uv 
uw 

. vw 

STRESS COEFFI C I ENTS 

°rl ______________________________ ~ 

., 

.; 

~ 

. 

.; 

N 
o 

~~---------~====------===~== 

N 

9 

. 
o , 

'" l' ~ 
;1 , , , , , , , ,= , , I 

M U W U ~ U W U U U U U U 
S. TI ME 

Fig. 4.4f. Shear stress correlation coefficients 
vs. St. Letters in the figure number 
correspond to the individual shear-flow 
simulations. 



I-' 
I-' 
\0 

STRESS COEFFICIENTS 

uv 
UW 
VW 

~ 

'" 0 

'" 0 

. 
0 

N 
0 

~+=-~-~---~ ~--- ~.~-~-~-~---~ -
N 

'11 "'-
. 
'I 

'" 'I 

., 
'I 

0 .. 
0.0 0.5 10 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 

S.TI ME 

Fig. 4.4g. Shear stress correlation coefficients 
vs. St. Letters in the figure number 
correspond to the individual shear-flow 
simulations. 

6.0 

STRESS COEFFI C I ENTS 

uv 
uw 
vw 

~ 

'" 0 

'" 0 

. 
0 

N 
0 

~-i=-'--~--~ ---.......:-::--~-;-::-::-::--;-::-::-::--~- -~~-=-=.=...-----

'T 

. 
'I 

'" 'I ----- --'" 'I 

0 .. 
0.0 05 10 1.5 2.0 2.5 3.0 3.5 4.0 ".5 5.0 5.5 6.0 

S·TlME 

Fig. 4.4h. Shear stress correlation coefficients 
vs. St. Letters in the figure number 
correspond to the individual shear flow 
simulations. 

6.5 



.1-' 
N 
0 

STRESS TENSOR PR I NC I PAL AX I S ROTATION 

S! 
o"--L-EA-S-T--S-Q-U-A-R-E-S-F-I-T-TE-D--F-U-N-C-TI-O-N--------------------------------------, 

LEGEND F = 0 * «SLjO).*A) * (i+S*M**2) (RE .. e) 
A= -0.4026 
B= -0.2559 ~ o 
C= -0.1040 
D= 1.2968 

~ 

:!l 
0 

~gj «0 
0 
« 

'" a 
z:!l 
-0 
z 
0 
;:: 
~2 
00 

'" 
e 
0 

~ 

~ 

• 0 . 
+ • 

• 

., 
0 

a = FLOW A 
o=FLOW B 
~ =FLOW C 
+ = FLOW D 
x = FLOW F 
• = FLOW G 
• = FLOW H 

PRINCIPAL STRESS RATiO (X-Y PLANE) 

o 

~TI-L-EA-S-T-S-Q-UA-R-ES--FI-T-TE-D-F-UN-C-T-IO-N-----------------------------, 
LEGEND 

o=FLOW A 
0= FLOW 8 
~ = FLOW C 
+ = FLOW D 
x = FLOW F 

~ 
o 
~ 

~ 

~ 

~ 
o 
>=0 
~S 
(/1 
(/10 

~!i 
(/1 

~il-
Cl. 

u o 
z!:! 

'" Cl. o 
S;; 

~ 

o 
.; 

F = 1 + (D * ((SL/Q) .. A) • (1+B*M .. 2) • (RE .. C)) 
A= 0.7424 
B= -2.1763 
C= 0.1179 
D= 1.1635 

o 
~ 

~o 

~ 0 

0· 

• = FLOW G 
• = FLOW H 

a 

x x 

a 

a 

:1 , , , , , , , , , 1:1" " ,." , , " , , I 
0.00 0.05 a.tO 0.15 0.20 0.25 0 . .30 0.35 0.40 0.45 0.50 0.0 2 a 4.0 60 80 10.0 120 14.0 16.0 180 200 22.0 24.0 26.0 28.0 

Fig. 4.5. 

FITTED FUNCTION FITTED FUNCTION 

Angle, a, between Cartesian and princi- Fig. 4.6. 
pal axis coordinates of the Reynolds stress 
tensor vs. estimated values of a from the 
least-squares fitted function. The HGC 
flow is indicated by the solid dot. 

Ratio of the principal stresses of the Rey­
nolds stress tensor in the x-y plane vs. 
estimated values from the least-squares 
fitted function. The HGC flow is indicated 
by the solid dot. 



r-' 
N 
r-' 

RUV 
RUU 
RVV 
RWW 

~ 

'" 0 

~, \ 
~~ \ 
;;~ \ 

\ 
;;~ \ 
;;~ \ 

\ 
ci~ 

\ 
0 
ci 

,j' 'f 

N 

'f 

'" 0 , . 
'f 

0.0 0.5 1.0 

Fig. 4. 7a. 

REYNOLDS STRESS ANISOTROPY 

----
---- ----

1.5 

--- ---
----------

--------

~ ~ ~ u u ~ ~ u u u 
S. TIME 

~ 
ci 

'" N 
ci 

~ 
ci 

'" ;; 

52 
ci 

:3 
ci 

~ 

:3 
ci , 
52 
'f 

'" 'f 

~ 
'f 
'" N 
0 , 

RUV 
RUU 
RVV 
RWW 

-------
-------

0.0 0.5 

Reynolds stress anisotropy, bij , vs. Fig. 4.7b. 
St for the seven shear s±mulatl0ns 
b
l2 

= RUV, b
ll 

= RUU, b
22 

= RVV, b
33 

= 

RWW. Letters in the figure numbers cor-
respond to the individual shear-flow 
s±mulations. 

REYNOLDS STRESS ANISOTROPY 

------
-------

--------------------

-------
-------

-------
------- -------

-------
------- ---- ---- ---- --

1.0 1.5 2.0 2.5 3.0 3.5 '.0 '.5 5.0 5.5 
S·TIME 

Reynolds stress anisotropy, bij , VS. 

St for the seven shear s±mulatl0ns 
b
l2 

= RUV, bll = RUU, b22 = RVV, b33 
RWW. Letters in the figure numbers cor­
respond to the individual shear-flow 
simulations. 

6.0 



t-' 
N 
N 

REYNOLDS STRESS ANiSOTROPY REYNOLDS STRESS ANiSOTROPY 

RUV ~----

RUU 
RVV 

RUV ~ ~l 

~I 
g 
o 

on 
N o 

:; 
o 

'f' 
o 

S? 
o 

g I 

g 
o 

on 
o 
o , 

RWW 

Fig. 4. 7c. 

RWW 
~ 
0 

on 
~ 

0 

0 
~ 

0 

on 
N 
0 

0 
N 
0 

'f' 
0 

0 

0 

on 
0 
0 

0 
0 

-----
0 ------- ---
on 
0 

~ 
0 

~ 
.r, 

0 , 
0 
N 

~ 
on 
N 
0 , 
0 
~ 

0 , 
00 0.5 

Reynolds stress anisotropy, bij' vs. Fig. 4.7d. 
St for the seven shear simulat1ons, 
b
12 

= RUV, b
ll 

= RUU, b22 = RVV, b33 
RWW. Letters in the figure numbers cor-
respond to the individual shear-flow 
simulations. 

-------.. 

----- -- -- -- ---------
---------

to '.5 2.0 2.5 3.0 3.5 '.0 '.5 5.0 5.5 

S·TIME 

Reynolds stress anisotropy, b ij , vs. 
St for the seven shear simulat10ns 
b

12 
= RUV, b

ll 
= RUU, b

22 
= RVV, b33 

RWW. Letters in the figure numbers cor­
respond to the individual shear-flow 
simulations. 

6~0 



I-' 
N 
W 

REYNOLDS STRESS ANISOTROPY 

on 
d 

~ 

d 

~ 

d 

N 
d 

d 

o 
d 

RUV 
RUU 
RVV 
RWW 

-- ------.... 
~ 

"-~ ~ 
"--? ~ 

0-

N 

? 

~ 

ef' , 
0.0 0.5 1.0 

---­ =-

1.5 2.0 2.5 3.0 
S. TI ME 

-- -
--

3.5 4.0 4.5 

-
----

5.0 5.5 

on 
~ 

d 

g 
d 

on 
N 
d 

2 
d 

on 
;:; 

!2 
d 

~ 

on 

~ , 
!2 

? 
on 

9 
2 
? 
on 
N 

? 
6.0 0.0 

REYNOLDS STRESS ANISOTROPY 

RUV 
RUU 
RVV 
RWW 

- -- ------.... 
.~~ 

~~ 

0.5 1.0 

-----.... 
---------------

--------
-------- ------.... 

--....--.... 

._---
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

S·TIME 

Fig. 4.7f. Reynolds stress anisotropy, b ij , vs. Fig. 4.7g. 
St for the seven shear simulatl0ns 

Reynolds stress anisotropy, bij , vs. 
St for the seven shear simulatlons 

b
l2 

= RUV, b
ll 

= RUU, b
22 

= RVV, b
33 

RWW. Letters in the figure numbers cor­
respond to the individual shear-flow 
simulations. 

b
l2 

= RUV, b
ll 

= RUU, b
22 

= RVV, b
33 

RWW. Letters in the figure numbers cor­
respond to the individual shear-flow 
simulations. 



I-' 
N 
~ 

~ 
ci 

~ 
ci 

g 
ci 

'" N 
ci 

:;: 
ci 

'" ;; 

" ci 

'" 0 
ci 

8 
ci 

r
-
RUV 
RUU 

. RVV 
RWW 

'? ~ 
o '-.. 

REYNOLDS STRESS ANiSOTROPY 

~ 

--- ------ -~j ~ 
;; -----
I _____ ---
'" -----'j ~~ , j , , , ,~~ ,-~--, ~ I 

M ~ W ~ ~ u u ~ u u ~ u u u 
S·T1ME 

Fig. 4.7h. Reynolds stress anisotropy, bij , vs. 
St for the seven shear simulat~ons. 
b

12 
= RUV, b11 = RUU, b22 = RVV, b33 

= RWW. Letters in the figure numbers 
correspond to the individual shear-flow 
simulations. 

LUMLEYS I NVAR I ANT MAP 
.. 
~"I--U~DE~F~I-NE~D~A~S~T~HE--T~R-A~C~E~O~F~8~'-'~2------------------------------------, 

LEGEND 

o 

~ 

=: o 

~ 
o 

=: 
1- 0 
Z .. 
'" ~o 
zl'!· 
_0 

" o 

12 o 

! 

1\1 DEFINED AS THE TRACE OF 8 .. 3 
C = II VS. III 

~, iii i Y i 
-0.10 -o.os -0.()6 -0.04 -0.02 0.00 0.02 0.04 0.0Il 0.011 0.10 

INVARIANT III 

Fig. 4.8. Invariants of the Reynolds stress anisotropy. 
II vs. III (defined in Eq. (4.5.6). All 
turbulence must be in the triangular region. 
The left and right lines indicate axisymmetric 
turbulence. The top line indicates two­
dimensional turbulence. The HGC flow is 
indicated by the black dot. 



I-" 
N 
VI 

DECOMPOSED RUU AND RWW 

RUU SOL 
RUU DIV 

RWW SOL 
RWW DIV 

0 
0 
0 ,. 

0 

8 
" 
0 

§ 

0 

~ 

0 

:j /~~ 
1 --1 ----------

~~ / 
I 

0.0 0.5 t.O ~ H U U U ~ U U U U u 
~n~ 

0 

I 
0 
0 
0 
g 

0 

~ 
0 

8 
g 

0 
0 
0 

Sl 

i 
q 
0 

~ 

0 
0 
0 

~ 

~ 
0 
0 

RUU SOL 
RUU DIV 

RWW SOL 
RWW DIV 

~ 
\, 

\ 

0.0 05 

\ 

DECOMPOSED RUU AND RWW 

"""" 
'-------------

1.0 1.5 2.0 2.5 3.0 35 4.0 4.5 50 5.5 
S·TlME 

Fig. 4.9a. Moyal decomposed Reynolds stresses ~l 
and R33 as defined by Eq. (4.6.3) 

Fig. 4.9b. Moyal decomposed Reynolds stresses ~l 

and R33 as defined by Eq. (4.6.3) 
vs. St. vs. St. 

S D S D 
RUU SOL R

U
' RUU DIV R

ll
, RWW SOL R33 , RWW DIV R33 

Letters in the figure numbers correspond to the individual shear flow 
s imula t ions. 

6.0 



I-' 
N 
(J'\ 

DECOMPOSED RUU AND RWW 

RUU SOL 

RUU DIV 

RWW SOL 

RWW DIV ~~r' ------~ 
o 
g 

~ 

g 

o 
.n 

o g 

'\ 
'\ 

\ 

'" '" '" '" '" --- --- --- -----------

DECOMPOSED RUU AND RWW 

r ;~~ ~~~. 
J KWW :;:'UL 

RWW DIV 

~~rl------------------------------~ 
q 

'" 
o . 
~ 

o g 

o 
.; 

o 

'" 
o .. 

-= ---- --------------

'] I 1 ' 
o 
N 

'. ""i~c:::;:.::.<m-o,o oomo>~oc~ oO,=;C=,- 0 _, • ,~ 0 ----;--~c m,mmo,_ oo_;_m;m __ o, 00 __ ;0000000;_0 __ 0 __ ,00 __ 0 __ 1 
00 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 0.0 0.5 to 1.5 2.0 2.5 3.0 3.5 •. 0 4.5 5.0 5.5 6.0 

S.TIME S.TIME 

Fig. 4.9c. Moyal decomposed Reynolds stresses ~l 
and R33 as defined by Eq. (4.6.3) 
vs. St. 

Fig. 4.9d. Moyal decomposed Reynolds stresses ~l 
and R33 as defined by Eq. (4.6.3) 
vs. St. 

RUU SOL 
S 

Ril' RUU DIV = D 
FU' RWW SOL 

S R
33

, RWWDIV 
D 

R33 
Letters in the figure numbers correspond to the individual shear flow 
simulations. 



~ 
N 
-....J 

'b'" -;S1 

0 

:G 

0 

~ 

0 

~ 

'" !2 

o 
on 

DECOMPOSED RUU AND RWW 

RUU SOL 

RUU OIV 

RWW SOL 

RWW OIV 

------- - - -- - - -- --- - ----

DECOMPOSED RUU AND RWW 

RUU SOL 

RUU DIV 

RWW SOL 

RWW DIV ~~r'----------------------------------J 
o 
1ii 

o 
:G 

o 
~ 

o 
~ 

~ 

o 
on 

, 
'\ 
'\ 

\ 

'" ""- ""­
""-

""-
-- --- -- -- -- -- - -- -- -- --

~, , _ --;- - - __ _ -i uHu --::---------------------------·--1 ~ to -=--J~{O--·~·--·····,········;·····::;-::=·~········;·······;········,········;······-1 
0.0 0.5 

Fig. 4. 9f. 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 
S. TIME 

Moyal decomposed Reynolds stresses ~l 
and R33 as defined by Eq. (4.6.3) 
vs. St. 

6.0 

S D 
RUU SOL = Ril' RUU DIV Ril' 

Fig. 4.9g. 

RWW SOL 

2.0 2.5 3.0 3.5 4.0 4.5 5.0 
S.TI ME 

Moyal decomposed Reynolds stresses 
and R33 as defined by Eq. (4.6.3) 
vs. St. 

S D 
R33 , RWW DIV R33 

Letters in the figure numbers correspond to the individual shear flow 
simulations. 

5.5 6.0 

~l 



I-' 
N 
00 

"b'" -«> 
• N 

0 

~ 

0 

~ 

0 

~ 

0 

:;a 

0 

~ 

~ 

'" :< 

0 

ti 

0 g 

0 
.; 

0 

'" 
0 .. 
0 
N 

0 
0 

RUU SOL 

RUU DIV 

RWW SOL 

RWW DIV 

0.0 0.5 

Fig. 4.9h. 

1.0 

DECOMPOSED RUU AND RWW 

/' 

-------------

u w u ~ u u u u u u e 
~n~ 

Moyal decomposed Reynolds stresses ~l 
and ~3 as defined by Eq. (4.6.3) 
vs. St. 
RUU SOL = ~l' RUU DIV = ~l' RWW SOL 

Rs RT.rr.T DIu = RD Tet-t-e .... s;." the Hg-
L 33' L .".. • • 33 . "-' - - - --- -- --

ure numbers correspond to the indiv.idual 
shear-flow simulations. 

o 

~ 
o o 
5l 
o 

~ 
o 

~ 
o 

~ 
o 

~ 
o 
o 

o o 
~ 
o 

DECOMPOSED RUV AND RVV 

RUV SOL ----

RUV DIV 

RVV SOL 

RVV DIV 

""-
""-

""-
""-"""'-

""'-
""--------

-----------------

r ~ . 
! j , , , , , , , , , , , , I 

0.0 o_~ 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 

Fig. 4.10a. 

S·TIME 

S D 
Moyal decomposed Reynolds stresses R12 
and R~2D as defined by Eq. (4.6.3) 
vs. St. S D 
RUV SOL = R23 , RUV DIV = RI2' RVV SOL = 
R;Z' RVV DIV = R~2. Letters in the fig­

ure numbers correspond to the individual 
shear-flow simulations. 



.... 
N 
\0 

a 
ci 

!:l 

RUV SOL 

RUV DIV 

RVV SOL 

RVV DIV 

f\\ 
\ 

\ 
\ 

\. 
"-... 

"-... 

DECOMPOSED RUV AND RVV 

"-... 
"-... 

---- ---- ---- --- ----

:~~~~~~~~~-----~-~-=-~-
~ 

§ 
g 
7' i , , , i , ii, i , , 

M ~ W ~ W U ~ U U U ~ U M 
S·TIME 

Fig. 4.10b. Moya1 decomposed Reynolds stresses ~2D 
and R~2D as defined by Eq. (4.6.3) 

vs. St. 
S 

RUV SOL = RJ.2' 
D 

RUV DIV = RJ.2' 

DECOMPOSED RUV AND RVV 

RUV SOL 

RUV DIV 

RVV SOL 

RVV DIV ~~(, ______________________________ J 
a 
~ 

a 

'" N 

a 
2 

a 
'!! 

a g 

a .n 

a 
ci 

a 

"I 

a 

9 
a 

\ 
\ 

\ 
\ 

'" "'" "'" "'" ---- ---- ---- ---------

----------

~, , , , , , , , , , , , , I 
0.0 05 to 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 

S·TIME 

Fig. 4.10c. Moya1 decomposed Reynolds stresses ~2D 
and R~2D as defined by Eq. (4.6.3) 

vs. St. 

RVV SOL = R~2' RVV DIV 
D 

R22 
Letters in the figure numbers correspond to the individual 
shear-flow simulations. 



I-' 
W 
o 

il 
i 
C> 

RUV SOL 

RUV DIV 
RVV SOL 

RVV DIV 

g ""-
~ '" 
§ '" 

t"'\r-"r\l U",,,("'r-,, r'1I 1\ I A 11.,,, n, 1\ I 
Ut.\....UIVII--U::>t.U r\U V I-II'lU "V V 

~ "---g "'-... 

~ "'-..."'-... 

g -------~ ------C> 

~ 
C> 

~VSOL 
I :~v DIV 
I RVV SOL 

RVV DIV 

'" '" '" '" 

DECOMPOSED RUV AND RVV 

--- --- --- ------ ------
~ -------------- -----
C> 

~ ------------------

~F-:-~-~-~-=--:------ ... -~-~-~-~~-:--==-~-~-~-=-~-
o 
ci 

~ 
c\ 
§ 
:;: 
i 
do 

i 
~, , • , , , , i , , • , , 

M U W U U U U ~ ~ u u u u 
S·TIME 

o 
ci 

~ 

i 
<> g 
g 

'" ~ 

-------

I ~, , , , , , J 

0.0 0.5 10 1.5 2.0 2.5 3.0 
S. TI ME 

,.5 4.0 4.5 5.0 5.5 

Fig. 4.l0d. Moyal decomposed Reynolds stresses ~2D Fig. 4.l0f. Moyal decomposed Reynolds stresses ~2D 
and R~2D as defined by Eq. (4.6.3) and R~2D as defined by Eq. (4.6.3) 

vs. St. vs. St. 
S D S D 

RUV SOL = ~2' RUV DIV = Ri2' RVV SOL = R22 , RVV DIV = R22 

Letters in the figure numbers correspond to the individual shear­
flow simulations. 

6.0 



f-,I 
W 
~ 

RUY SOL 

RUV DIV 

RVV SOL 

RVV DIV 

DECOMPOSED RUV ANP RVV 

~~I r-----
~1\ 
~ \ 

~ \ 
\ 

\ 
\ 

a 
~ 

a "-. 
~ 

"'" "'" a "'" Ii ,----
--------~ ------------

r~::=='~----~-=-~-=-:--=--:-~-:--:-:-:-=-~-==-~-
a 

'1 

a 

!if I I I I I I I I I I I I 
M U W ~ ~ ~ ~ U U U ~ ~ u 

~n~ 

Fig. 4.10g. Moya1 decomposed Reynolds stresses 
S,D d R
12

- an RS,D 
22 

as defined by Eq. 

(4.6.3) vs. st. 
s 

RUV SOL = Rt2' RUV DIV 
D 

Rt2' 

RUV SOL 

RUV D.IV 

RVV SOL 

RVV DIV 

DECOMPOSED RUV AND RVV 

~g~I------------------------------------~ 
a .. 
a 
.,; 

a 

a 
N 

a 
ci 

a 
N , 

a 

1 

a 
'f 

"--
~ 
~ 

---- ---- ---- ---------------

--------

~~f----~----~----~--~----~----r_--~----_r----~----r_--~----~----~ 0.0 0.5 lO 1.5 2.0 2.5 3.0 3.5 4,0 4.5 5.0 5.5 6.0 6.5 

S*TIME 

Fig. 4.10h. Moya1 decomposed Reynolds stresses 
RS,D 

12 and RS,D 
22 

as defined by Eq. 

(4.6.3) vs. st. 
RVV SOL S R

22
, 

D 
RVV DIV = R

33
• 

Letters in the figure numbers correspond to the individual shear-flow simulations. 



I-' 
W 
N 

~1 E(K) 
El(K) 

.. E2(K) 
E3(K) 

~ 

'1$2 

":$2 

'$2 

~ 

SOLENOIDAL ENERGY SPECTRA 

I''''''~ ~_, 

" 

,/ ----- -./\ '\. 
..i- ----- ' ------ '/ ' '\ \. 

(
' '-. 'V' . 

" '-..... ' ... 1/ - -.... ./" '-- \\ 
I

' '-..... ," 
1/,/1 " \ ... 
, "" , '. :! 1 '\ \., 

~I \ ~ 
I 1 '\ '\\1 

1
\\ 

\ '\ 
\\., 
\'\ 
\\\ 

'Ql :, ~ \' "\ I let ' , I I , I ,: 1d ' ( , I 

WAVE NO, 

Fig. 4.lla. 3-D spectra of the solenoidal part of 
the Reynolds stress field as defined 
by Eq. (4.6.5). 

SOLENOIDAL ENERGY SPECTRA 

fECK) - ---. --
1 ~~~;, 
1 r.'I..") 

~ E3(K) 
'S2 

'. 

$2 " ---- -"\ >" //-~- v~ .. 
/ / ----- ---- - ---- ---- ---- ," .. ;'~ '-- "-... ,-// '-..... ~ ... 

' "'- " '$2 

;1' "" \ 
? \\ 

\: '., 

~ 

'$2 

(J; , , , , 'l~ 

ld' WAVE NO. 

Fig. 4.llb. 3-D spectra of the solenoidal part of 
the Reynolds stress field as defined 
by Eq. (4.6.5). 

Nomenclature same as for Fig. 3.3. Letters in figure numbers correspond to the individual 
shear-flow simulations. 



I-' 
W 
W 

E(K) 
Ei(K) 

'S;?.,J E2(K) 

E3(K) 

';"S2 

~ 

'rs;? 

";'s;? 

SOLENOIDAL ENERGY SPECTRA 

/ - ------ -V, ~'" ,/ r-- /"-______ _ \, 
/ / --............ ------~ \\ ' ,~ '\ 

/J \\\ 
//' \\\ 
/, ~, 
/ \\, 

\' .... 

\\\ 
\' \ 

%? ~\ 
"': »'\, ,I b II lb' ~1 WAVE NO, 

Fig. 4.llc. 3-D spectra of the solenoidal part of 
the Reynolds stress field as defined 
by Eq. (4.6.5). 

's;?IE\Kl 
El(K) 
E2(K) 
E3(K) 

~ 

~ 

's;? 

$? 

"i'Q 

SOLENOIDAL ENERGY SPECTRA 

" 
: ~'" /'r------ V'~ """ 

(7 ~ ~ --- ----- -------- --- ----- ' '\--." 
/" "- " 

",// "-" \'--\ 
// \\\ 

/ I '~ " / \, ... 

/ \\ ~, ~ 

~\'" I, " 
\\ '\ 
\\' '~! , " 

's;? I \I 1 I 
c<t,lcf lb" i 

WAVE NO. 

Fig. 4.lld. 3-D spectra of the solenoidal part of 
the Reynolds stress field as defined 
by Eq. (4.6.5). 

Nomenclature same as for Fig. 3.3. Letters in figure numbers correspond to the individual 
shear-flow simulations. 



1-' 
W 
.c--

SOLENOIDAL ENERGY SPECTRA 

fE-------------.-.--.--- -
;S?j ~~~:) == 

.. E2(K) ---
E3(K) 

':'g 

,'---- .. 

Q 

~ 

,/;-___ /'\/~-~ 
j'/-"'---/_J""'-----... '\ 

f "-

/' " , .:' " \ 

,/ \' 
";'g 

,/1 \\ 

j \ 
1 ~ \, 

\' " \ .: 

';;2 
\ \ '. 

\' 
;o~ , , , 'ld 
;I; 1Cf WAVE NO. 

I) ,I 

Fig. 4.11f. 3-D spectra of the solenoidal part of 
the Reynolds stress field as defined 
by Eq. (4.6 .5) • 

J E(K) 
;S? El(K) 

r!"" .... ,,~, 

""II c..£\"J 

E3(K) 

Q 

~ 

Q 

";'Q 

'fg 

SOLENOIDAL ENERGY SPECTRA 

... ----, "" ",,"/--- \; ~\, 
,,' / ------......---............. .. --. 

,,//j "" '\-., 
... /' '\ I'" 

/>/ " \ ... 
/, ",-. 
/ \\'''\ 

\ I " 

\\\'" 
\'" 
\\\ 
\, ... 

\1 \ 

\) 'J , I ;~~ , '10' 
let WAVE NO. 

~\ , , 

Fig. 4.11g. 3-D spectra of the solenoidal part of 
the Reynolds stress field as defined 
byEq. (4.6.5). 

Nomenclature same as for Fig. 3.3. Letters in figure numbers correspond to the individual 
shear-flow simulations. 



f-,.,l 
W 
\J1 

;$1~ 
El(K) 
E2(K) 
E3(K) 

'$1 

b 

SOLENOIOAL ~NERGY SPECTRA 

" 

" /'r-~'\ 
: ------ - , \\ 
,--- - ~-- ~ ----- "'- '-, 

: , .-/ '"'" ", 

/;I~-- "\\\ 
~s;? 

'$1 

/1/ '\\\ 
J " /// \,\ 

~ \~ 
~$2 \\: 
, \\ I 
'0 I 9 , 

~J ~ 
WAVE NO. 

Fig. 4.llh. 3-D spectra of the solenoidal part of 
the Reynolds stress field as defined 
by Eq. (4.6.5). Nomenclature same as 
for Fig. 3.3. Letters in figure numbers 
correspond to the individual shear-flow 
simulations. 

E(K) 
El(K) 
E2(K) 

~$1 I E3(K) 

.... $2 

'$1 

"iQ 

DIVERGENCE ENERGY SPECTRA 

/' 
;--'I-"\ 

:/ I "'\l)if 
:/1 ,\;' 
/ I /' '-\ 1 \ 

,/ I / \ \/ /\ \ h ;' / / ' \./ \, V 
/11 \ ... , ' v 

.' /' ' '.. ,< V 
II '-J '\ \/ \ If ' ' ' '~- \,/\, \:- ,,,,\ 

'~"", 

Q 

'/ ',-,"" , ' 

~-'-.\ " 
, ~ 
V~'\I 

~~ , '~ 
~~ ~E~ 

: \1 _, ,I 

Fig. 4.12a. 3-D spectra of the dilatation part of the 
Reynolds stress field as defined by Eq. 
(4.6.5). Nomenclature same as for Fig. 
3.3. Letters in figure numbers correspond 
to the individual shear-flow simulations. 



~ 
w 
(J'\ 

DIVERGENCE ENERGY SPECTRA 

) E(K) 
E1(K) 1 
E2(K) 

l:?J E3(K) 

~ 

's< 

~ 
1 
1 

'1'9 

'\ 

/---)/\~,~/~ 
..: / \"---~ , 

/
.: ,', \"v!~ 

,:' J / \ .... , /\ "- / '\ 
: '/ " : " \~ /--> /' ',,- ",: \.'., '"~ 

'/ / "-- -/", :-, ~ 
/ ~~,\ ~ 

~\ ~ 
'\ ~ 

"iS2 

"). \ 
\\ 

~~ '\ 
.. \ ~ 

\~,\ \ 
• ,,\ \ \ i I ~ i '!'5~ iii J, - m ~~ WM~ 

Fig.4.l2b. 3-D spectra of the dilatation part of 
the Reynolds stress field as defined 
by Eq. (4.6.5). 

J 
E(K) 

~s< E1(K) 

1 

'>2 

~ 

~S2 

';'s;? 

__ E2(K) 

E3(K) 

DIVERGENCE ENERGY SPECTRA 

;-\' \ 
'-', / ........ \ ......... ,-"\ : "f"::---v , /\ 

.' / ................ \-~ 
-----~-.../",~-'-.... \ /~ '----',. ""-, 

i :?'-\'" \ 
;./\\~\ 
/' \\ -\ 

"--, \ 
\ .. \ 

\~ 
1\ I ~~ 1 iii i 1d i i 

1d' WAVE NO. 

Fig. 4.12c. 3-D spectra of the dilatation part of the 
Reynolds stress field as defined by Eq. 
(4.6.5) 

Nomenclature same as for Fig. 3.3. Letters in figure numbers correspond to the individual 
shear-flow simulations. 



i-' 
Vol 
'-J 

E(K) 
E1(K) 
E2(K) 

DIVERGENCE ENERGY SPECTRA 

7S'j E3(K) 

't~ 

~ 

'S' 

"i52 

~S' , , '1~ 
~ ~E~ 

,'" ,I 

Fig. 4.l2d. 3...:D spectra of the dilatation part of 
the Reynolds stress field as defined 
by Eq. (4.6.5). 

E(K) 
E1(K) 
E2(K) 

"s>j E3(K) 

~ 

'Q 

~ 

';'52 

/.:'/ 
! 

DIVERGENCE ENERGY SPECTRA 

~o , '011 I 
-1it 1~ , 

WAVE NO. 

Fig. 4.l2f. 3-D spectra of the dilatation part of 
the Reynolds stress field as defined 
by Eq. (4. 6 .5) . 

Nomenclature same as for Fig. 3.3. Letters in figure numbers correspond to the individual 
shear-flow simulations. 



t-' 
W 
00 

7S2i E(K) 
.. El(K) 

E2(K) 
E3(K) 

~ 

1$2 

DIVERGENCE ENERGY SPECTRA 

/' 
~ ~J ~ "" ..... 1'-.... / "- ~ /' 'C-\\ 

,/ "'" 'v .. \"\; 
,/ / .... ---- .... ------., 'v' 

~ 

,/ / ------~-~_\, ~ 
'- ~- \\1 ,/ ;:::Y ',,---~ __ ~ \ 

~ '<~\ 

Q 

';~ 

\,:\\'\~ 

\\'\~ 
'--. ~ 

"-'~~', 

\\' 
\ " 

'0 , , i, -, m 
c'::,if WAVE NO. 

, "" , I 

Fig. 4.l2g. 3-D spectra of the dilatation part of 
the Reynolds stress field as defined 
by Eq. (4. 6 • 5) . 

DIVERGENCE ENERGY SPECTRA 

-' I 
rE(K) ~ 1 El(K) 
I E2(K) 

'\2j E3(K) 

1\ 

'S? 

'S? 

...... ~/~'l yw~" 
/~ . ../.-----.- ... /-- \ , 

/ -~ . \. \ 
/ ---- ----------... ~-~-~ \ /-
::---- "'.: "'" 

.. ............ '''v' :'/ "--, \ 
: --. 

I\~ 'S? 

';Q 

'0' 1\ I 
-,d' ,b' ' , 

WAVE NO. 

Fig. 4.l2h. 3-D spectra of the dilatation part of 
the Reynolds stress field as defined 
by Eq. (4. 6 .5) . 

Nomenclature same as for Fig. 3.3. Letters in figure numbers correspond to the individual 
shear-flow simulations. 



I-' 
W 
\0 

DECOMPOSED STRESS SPECTRA 

V1V2(K) 
V1W2(K) 
W1V2(K) 
W1W2(K) 

~~tJ-----------------------------------J 

,j Q>~~---'---===----------

~ 
I 

~ 
I 

~ 

:il 
I 

" 12 
I 

o 
~ 
I 

w

l1 
~, , , , , i ; , , i , , i I 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 

Fig. 4.13a. 

WAVE NO. 

3-D spectra of the Moyal decomposed 
shear stress as defined by Eq. (4.6.5). 

V1V2(K) 
V1W2(K) 
W1V2(K) 
W1W2(K) 

DECOMPOSED STRESS SPECTRA 

~S~I ______________________________ ~ 

t 

Uf~~-7?~---------------" 0 

0 ., 
:;: 
I 

1 

~ 
I 

0 

"I 

1 

~ 

" "i' 

:;: 
I 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 
WAVE NO. 

Fig. 4.13b. 3-D spectra of the Moyal decomposed 
shear stress as defined by Eq. (4.6.5). 

VIV2(K) indicates ~2' VIW2(K), WlV2(K), W1W2(K) are the contributions to ~2' 
WAVE NO. indicates the magnitude of the wavenumber vectoL Letters in the figure 
numbers correspond to the individual shear flow simulations. 



f-' 
+:­
o 

DECOMPOSED STRESS SPECTRA DECOMPOSED STRESS SPECTRA 

~~~~~:)) -------- --- -------~ V1V2(K) 

V1W2(K) 

WiV2(K) 
W1W2(K) 

''?:ilr' -;------.----.J 
W1V2(K) I 
W1W2(K) 

'0 0 -;";j,' ~----_--.J 
~~ - -:' ,-, 

rv~J'~-
o 
ci 

.' '<'\, 

/~1-~~/~'=-------

1 
o 
ci ,-

o 
~ , 

o 

~ 

o 
~ 
N , 

" 7 

o 
';' 

o 

~ 

o 
<0 , 

o 

'" , 

o 

" , 

o 
N 

lj \j '; V ' 

1 , , , , , , , , , , , , I ,1 , , , , , , , , , , , , I 
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 0.0 50 10.0 150 20.0 25.0 30.0 350 40.0 45.0 50.0 55.0 60.0 65.0 

Fig.4.13c. 

WAVE NO. WAVE NO. 

3-D spectra of the Moyal decomposed Fig. 4.13d. 
shear stress as defined by Eq. (4.6.5). 

VIV2(K) indicates ~2' VIW2(K), WIV2(K), W1W2(K) 

3-D spectra of the Moyal decomposed 
shear stress as defined by Eq. (4.6.5). 

are the contributions to ~2' 
WAVE NO. indicates the magnitude of the wavenumber vectoL Letters in the figure 
numbers correspond to the individual shear flow simulations. 



~ 
.J:-
~ 

DECOMPOSED STRESS SPECTRA 

V1V2(K) 
V1W2(K) 
W1V2(K) 
W1W2(K) 

DECOMPOSED STRESS SPECTRA 

V1V2{K) 
V1W2(K) 
W1V2(1<) 
W1W2(K) 

'~~t,--:.--------------------l 
-;/,.~:\ .. --, 

'bo ·.nf' --:----------~ . 
" .' 

~~ f \~;;-,-;:;-,.~- ==~---~ 

q~ r\/0-----~-':'O-
o \JI'~/~~-

f 
o 
.; 
I 

0 .. 
I 

q 

Sf 
q 
~ 
I 

q 
;! 
I 

~ 
I 

q 

~ 
0 
g 
I 

~ 
0 

~ 
0.0 

'II 
Vi 

5.0 10.0 15.0 20.0 25.0 30.0 35.0 .0.0 45.0 SO.O 55.0 60.0 65.0 
WAVE NO. 

~ 
I 

~ 

~ 

~ 
I 

~ V\j 
o 

7' i 
0.0 5.0 10.0 T~.O 4:0.0 2!J.O 30.0 J!I.O 40.0 45.0 50.0 5~.O 60.0 65.0 

WAVE NO. 

Fig. 4.l3f. 3-D spectra of the Moyal decomposed Fig. 4.l3g. 3-D spectra of the Moyal decomposed 
shear stress as defined by Eq. (4.6.5). shear stress as defined by Eq. (4.6.5) 

V1V2(K) indicates ~2' V1W2(K), WlV2(K), W1W2(K) are the contributions to ~2' 
WAVE NO. indicates the magnitude of the wavenumber vector. L etters in the figure 
numbers correspond to the individual shear-flow simulations. 



f-' 
.l::­
N 

i viV2(K}-­

I V1W2(K) 
, W1V2(K) 

W1W2(K) 

~!2 '" I 
* N / ... 

DECOMPOSED STRESS SPECTRA 

'" '" 
'" 

" '"<\.'" .... ----.. ---:.-:::;;~' ~ ~--=-=--=-,I -----------~----

<;' 

'" l' 
'" '" I 

'" "i 

~l 
'" N 
;-

'" ~ 
'" ~ 

PRODUCTION 

P-STRAIN 

HOMO DrSP 

DIV DISP 

~, ' 

'" 

'" '" 

N 

'" 

'" 

'" '" 

'! 

r"'\,", r-Ti"'\,l"""r"'" rf""\IIATII""\f\1 
KUU ;:, I r<r:.;:,;:, r:.VUMI I VI~ 

~1 ~ / J /---;1 v I ~I // - ----------- -

11 , , , , , , , , , , , , I :r/ , , , , , , , , , , , , I 
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 .0.0 45.0 50.0 55.0 60.0 65.0 0.0 a 5 to 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 

WAVE NO. S. TI ME 

Fig. 4.l3h. 3-D spectra of the Moyal decomposed 
shear stress as defined by Eq. (4.6.5). 
VlV2(K) indicates Rf2' VlW2(K), W~V2(K), 
WlW2(K) are the contributions to ~2 
WAVE NO. indicates the magnitude of the 
wavenumber vecto~Letters in the figure 
numbers correspond to the individual 
shear-flow simulations. 

Fig. 4.l4a. Contributing terms in the Rll Reynolds 
stress equation defined as in Eq. (4.7.1) 
vs. St. Letters in the figure numbers cor­
respond to the individual shear-flow simu­
lations. 



I-' 
+:-
w 

'" ., 
" 
" ., 
0 

'" .., 
0 

~ 
0 

'" :;: 

~ 
" 
'!! 
0 

5> 
0 

'" " 0 

a 
0 

:s 
9 
5> 
0 
I 

RUU STRESS EQUATION 

PRODUCTION 

P-STRAIN 

HOMO DISP 

DIV DISP 

.......... 
.......... ---'-------

0.0 0.5 1.0 1.5 2.0 2.5 3.0 
S·TlME 

3.5 '.0 

---

'.5 5.0 5.5 •. 0 

~ I 
~ 
ci 

'" .., 
ci 

~ 
ci 

'" '" ci 

l'l 
ci 

'" o 

5> 
ci 

'" " 9 
S! 
9 
'!! 
9 

PRODUCTION 

P-STRAIN 

HOMO DISP 
DIV DISP 

"---
"---

RUU STRESS EQUATION 

---------
l'l ~----

<? 
00 0.5 10 1.5 2.0 2.5 3.0 3.5 •. 0 4.5 5.0 5.5 6.0 6.5 

S. TIME 

Fig. 4.l4b. Contributing terms in the Rll Reynolds Fig. 4.l4c. Contributing terms in the ~l Reynolds 
stress equation defined as in Eq. (4.7.1) stress equation defined as in Eq. (4.7.1) 
vs. St. vs. St. 

Letters in the figure numbers correspond to the individual shear-flow simulations. 



I-' 
~ 
~ 

RUU STRESS EQUATION 

r:~~~;~~ON -----------

~ 
.; 

on 
ci 
0 .. 
0 

on ., 
.; 

~ 
on 
'" 0 

- HOMO DISP 

DIV DISP 

~ I 
'!! 
.; 

51 
.; 

1l 
.; 

0 

~ 

onl'" I o " 
o " , " 

OJ --> I ' ~·-·~·::::.CCC.'CC=.~·-·~·==·=·==·""·::::· 

M ~ ~ G ~ b ~ G ~ ~ G ~ u 
S·TIME 

PRODUCTION 

P-STRAIN 

HOMO DISP 

DIV DISP 

RUU STRESS EQUATION 

~~I------------------------~ 
on . 
.; 

~ 
.; 

on 
~ 

o 

g 
o 

on 
N 
.; 

o 

~ I 
'!! 
.; 

51 
.; 

1l 
.; 

g 
o 

on 
o ~-9 

;1 : ~-~~--, -,--,-~-~~=, I 
M ~ W H ~ ~ ~ U U U ~ U u 

S·T'ME 

Fig. 4.l4d. Contributing terms in the ~l Reynolds Fig. 4.l4f. Contributing terms in the ~l Reynolds 
stress equations defined as 1n Eq. (4.7.1) stress equations defined as 1n Eq. (4.7.1) 
vs. st. vs. St. 

Letters in the figure numbers correspond to the individual shear-flow simulations. 



~ 
.j;:-
\J1 

.... ., 

.,; 

0 ., 
0 

.... 
~ 
.,; 

~ 
.... 
'" .,; 

0 

:s 
.... 
.,; 

!2 
.,; 

1': 
.,; 

0 
C! 
0 

1': 
'! 
!2 
'! 
.... 
9 
0 

'" 0 

~ 
.,; 

PRODUCTION 
P-STRAIN 

HOMO DISP 

DIV DISP 

'---.. 
'---.. 

'---.. 

RUU STRESS EQUATION 

-----------
--------

.... . 

.,; 

~ 
.,; 

.... 
~ 
.,; 

g 
0 

.... 
N 
.,; 

~ 
.,; 

'!! 
.,; 

0 
;; 

1': 
.,; 

0 
0 
0 

.... 
0 

'! 
!2 
'i' 

PRODUCTION 
P-STRAIN 

HOMO DISP 

DIV DISP 

RUU STRESS EQUATION 

---------

I 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 0.0 0.5 to 1.5 20 2.5 .3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 
S·TlME S·TIME 

Fig. 4.14g. Contributing terms in theR
11 

Reynolds Fig. 4.14h. Contributing terms in the ~1 Reynolds 
stress equations defined as m Eq. (4.7.1) stress equations defined as lon Eq. (4.7.1) 
vs. St. vs. St. 

Letters in the figure numbers correspond to the individual shear-flow simulations. 



I-' 
~ 
0\ 

~, 

PRODUCTION 
P-STRAIN 

HOMO DISP 
DIV DISP 

RVV STRESS EQUATION 

~ J ____ _ __ nmnn 

~ 
o 
<f 

51 
.; 
I 

~ 

C; 
I 

~ 
<f 

:(l 

<f 

/ 
/ 

~q / 
'i'l/ 
~ 
~ 

.; 
I 

o 

II 

/ 

r-----
/ 

/ 
/ 

---------
----------

;, , , i , iii , , , , i I 
M U W ~ U U U U ~ U U U M ~ 

~n~ 

RVV STRESS EQUATION 

~ , 
~ 
.; 

PRODucnON--- ----­

P-STRAIN 

HOMO DISP 
DIV DISP 

~ t--------
~ 
<f . 
o 

<f 

~ 
., 
o 

<f 

51 
<f 

N 

9 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

--
---------------

---

;t-, -~/, , , , , , , , , I 
M U W ~ U U U U ~ U U U M 

s·nME 

Fig. 4.1Sa. Contributing terms in the R22 Reynolds Fig. 4.1Sb. Contributing terms in the R.,2 Reynolds 
stress equations defined as ~n Eq. (4.7.1) stress equations defined as tfi Eq. (4.7.1) 
vs. st. vs. St. 

Letters in the figure numbers correspond to the individual shear-flow simulations. 



I-' 

""" ....... 

PRODUCTION 
P-STRAIN 

HOMO DISP 

DIY DISP 

RVV STRESS EQUATION 

~~,----------------------------~ .. 
o o 

~ 
<!; 
o 

~ 

~~I----~==~==~~============== 
~ o 
I 

;; 
'I 

!:! / 

'1' -- / --../ . 
'I 

-------
./-

// 

// 

~, , , , , , , , , , , , , I 
M U W ~ U H U U « u ~ U M U 

~TI~ 

RVV STRESS EQUATION 

~I 

I'! 
o 

l'l o 

1l o 

;; 
o 

N 
o o 

PRODUCTION 

P-STRAIN 

HOMO DISP 

DIY DISP 

or ~ , - p •• 

N 

~ 
I 8L --------------

o ~./" I ___ ~ 

~ -----

;; 
'I 

'1' 

~, , , i , , , , , , ii' 
0.0 05 to 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 

S·TlME 

Fig. 4.15c. Contributing terms in the R~2 Reynolds Fig. 4.15d. Contributing terms in the RZ2 Reynolds 
stress equations defined as ~n Eq. (4.7.1) stress equations defined as ~n Eq. (4.7.1) 
vs. St. vs. St. 

Letters in the figure numbers correspond to the individual shear-flow simulations. 



I-' 
~ 
00 

RVV STRESS EQUATION 

PRODUCTION . __ ._- .. 

P-STRA!N 

HOMO DISP 

DIV DISP 

~~I----------------------------~ 

S? o 

on 
o o 

~ I.. : i 

8 
o 
i 

S? 

" -- -- - ,'--

9
1 

\\ / 1 

"1 .... I ; , , , , , , , , , , 
M U W ~ U U ~ ~ u u u u u 

S.TI ME 

RVV STRESS EQUATION 

PRODUCTION . - -----

P-STRA!N 

HOMO DISP 

DIV DISP 

~~,--------------------------~ 
~ 
8 
o . 
o o 
N 
o o 

~I ---- _____ _ 
.­
o o 
i 

~ o 
i 

8 
'f .. 
o 

'f 
o 

'f 
/' 

/ 

/' 
/' 

/' 

--------
~J / it / I __ J 

ii' iii , i , i i 
M U W ~ U U ~ ~ U U U U u 

S·TlME 

Fig. 4.15f. Contributing terms in the R 2 Reynolds Fig. 4.15g. Contributing terms in the R 2 Reynolds 
stress equations defined astn Eq. (4.7.1) stress equations defined as In Eq. (4.7.1) 
vs. St. vs. St. 

Letters in the figure numbers correspond to the individual shear-flow simulations. 



..... 
~ 
1.0 

PRODUCTION 

P-STRAIN 

HOMO DISP 

DIV DISP 

~ 
0 

52 
0 

, , 

:g 
0 

I 
8 
0 

~ 

:1/ 
0 

::: 
'? 

RVV STRESS EQUATION 

" 
~. 

-----------
... - ----~r-------------

~, ii' , I I , , ii' i , 
M ~ W ~ ~ U ~ U U U ~ ~ U u 

S·TlME 

PRODUCTION 
P-STRAIN 

HOMO DISP 

DIV DISP 

RWW STRESS EQUATION 

;rl------------------------------------~ 
52 
o 

... 
o 

'? 

52 
'? 

'!! 
'? 
o 
N 
o 
I 

... 
N 

'? gl / 
9 / 

'" ~ 
'? 
o 

/ 
/ 

---
--------

r-- --------

/ ------

?, , , , i , ii' , , i , , 
0.0 0.5 to 15 2.0 2.5 3.0 3.5 ".0 4.5 5.0 5.5 6.0 6.5 

S·TIME 

Fig. 4.1Sh. Contributing terms in the R22 Reynolds Fig. 4.l6a. Contributing terms in the R33 Reynolds 
stress equations defined as 1n Eq. (4.7.1) stress equations defined as 1n Eq. (4.7.1) 
vs. St. vs. St. 

Letters in the figure numbers correspond to the individual shear-flow simulations. 



~ 
VI 
o 

~ , 
!!l 

'" 
S? 

'" 
~ 

gt' 

.... 
g 
I 

S? 
'f 

RWW STRESS EQUATION 

PRODUCTl6N' ----_ .. - I 
P-STRAII\! • 

HOMO DISP 
DIV DISP 

------
~~ ---
I -------' """" /------
~ 

'" I 

.... 

"""" /" """"/// 

~., , I , , , , I I , I , I 
M U W U U U ~ U U U U U u 

~TI~ 

PRODUCTION 

P-STRAIN 

HOMO DISP 

DIV DISP 

RWW STRESS EQUATION 

~~I----------------------------~ 
'" '" 
S1 

'" 
.... 
o 

'" 
g I,' 

'" o 

'f 

:t'--" ~~----
,~ "" ------------------

""------------------

S1 
'i' 

o 
N 

.9 

---

.... 

~~,----_r----~----~----~----~----r_----~--~----~----~----_r----~----~ 0.0 as to t5 20 25 3.n 3.5 ".0 ".5 5.0 5.5 6.0 6.5 
S·TIME 

Fig. 4.16b. Contributing terms in the R33 Reynolds Fig. 4.16c. Contributing terms in the R33 Reynolds 
stress equations defined as 1n Eq. (4.7.1) stress equations defined as 1n Eq. (4.7.1) 
vs. St. vs. St. 

Letters in the figure numbers correspond to the individual shear-flow simulations. 



i-" 
V1 
i-" 

" ci 

~ 
ci 

!2 
ci 

~ 
'" 
~ 
ci 

;; 
ci 

N 
0 
ci 

PRODUCTION 
P-STRAIN 
HOMO DISP 
DIV DISP 

RWW STRESS EQUATION 

PRODUCTION 
P-STRAIN 

HOMO DISP 
DIV DISP 

R'NW STRESS EQUATION 

~~,--------------------------------~ 

o 

'" ci 

'!! 
ci 

!2 
o 

81.·· 
ci 

N or> 
0 
0 ~ , 
;; 
'I 

~ 
:g 
'I 
!2 
'I 
~ 

, ----------
'" .-"'.-"'--

'" -_.-'" --
~rl------------------------------------~ 

------------
--- --- ------~ 

0 , . !2 
'I 

0.0 '.5 6.0 0' 1.0 15 2.0 2.' 3.0 3.' 4.0 4.' 5.0 ?~!----~------~----~----~----~----~----~----~----~~----~----~----~ 0.0 05 2.' 3.0 6.0 3.' 1.0 1., 2.0 4.0 4.' '.0 5.5 
S·TIME S·TIME 

Fig. 4.l6d. Contributing terms in the R33 Reynolds Fig. 4.l6f. Contributing terms in the R33 Reynolds 
stress equations defined as In Eq. (4.7.1) stress equations defined as 1n Eq. (4.7.1) 
vs. st. vs. St. 

Letters in the figure numbers correspond to the individual shear-flow simulations. 



~ 
VI 
N 

PRODUCTION 

P-STRAIN - ----------

HOMO OISP 

OIV DISP 

RWW -STRESS EQUATION 

PRODUCTION 
P-STRAIN 

HOMO OISP 

DI V OISP 

RWW STRESS EQUATi ON 

~~l------------------------------~ ~rl------------------------------~ 
!a o 

S> 
0 

'" ~ 

<> 
<> 
0 

'" <> 
<> 
I 

5> 
'? 

"-
0 
I 

~ 
0 
I 

'" N 

't 
g 
0 
I 

0_0 

"-... ----------------
"-... /------

"-... // 
/ 

05 '-0 '-5 2_0 2.5 J.O 

S·TlME 

--------

3_5 <_0 4_5 5_0 5_5 6_0 

~ 
o 

S> 
o 

i'l o 

~ 
. 
<> o 

N 
<> o 

~I' 
N 
<> 
'? 

------
~~ -'j-" ~~~- , <0 '-....... _--

; , ~-, , , , , , , , , , I 
M M W ~ ~ U U ~ U U U U U u 

S·TIME 

Fig. 4.16g. Contributing terms in the R33 Reynolds Fig. 4.16h. Contributing terms in the R13 Reynolds 
Eq. (4.7.1) stress equations defined as III Eq. (4.7.1) stress equations defined as In 

vs. St. vs. St. 

Letters in the figure numbers correspond to the individual shear-flow simulations. 



I-' 
VI 
w 

N 
0 

0 

" " 
0 
I 

N 

" I 

'" " I . 
9 

'" 'i 

'" 9 
~ 

'i .. 
'i 
.. 
9 

~ 
~ 
I 

PRODUCTION 
P-STRAIN 

HOMO DISP 

DIV DISP 

RUV STRESS EQUATION 

--------- --------

0.0 0.5 to ~ u u u u « u u ~ u u 
S·TlME 

'" N 

" 
2 
0 

'" c; 

~ 
0 

8 
0 

" ~ 

'" " 9 
~ 

'i 
'f2 

'i 
2 
'i 
'" N 

'i 
~ 
0 
I 

'" n 

'i 
~ 
'i 

PRODUCTION 
P-STRAIN 

HOMO DISP 

DIV DISP 

-------

0.0 0.5 1.0 

RUV STRESS EQUATION 

----

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 
S·TIME 

Fig. 4.17a. Contributing terms in the ~2 Reynolds Fig. 4.17b. Contributing terms in the R12 Reynolds 
stress equations defined as l.n Eq. (4.7.1) stress equations defined as ill Eq. (4.7.1) 
vs. st. vs. St. 

Letters in the figure numbers correspond to the individual shear-flow simulations. 



RUV STRESS EQUATION RUV STRESS EOUAT! ON 

PRODut~- ------ ---- l 
P-STRAIN 

HOMO D:SP 

r-::~~~~~~ o~_~_ ~ __ 
I HOMO DISP . 

DIV DISP DIV DISP 

:< 
,; 

~ 

,; 

>!> 
,; 12 

,; 

0 

,; :3 
,; -----~ 

0 
,; 

~ 
----------- 0 

0 
,; 

~ 
0 

'f 
~ 
0 

: i 
'f 

12 
'f 
~ 

>!> I-" 'f V'1 

'f 
0 

.p-
o 

" 
N 

'? 
'? 

~ 
N 

~ 
N 

'f 
'f 
0 

0 
n 

'f 
n 

'? 

~ 
~ n 
n 

'f 
0 , 

0 

~ 
0.0 2.5 .3.0 .3.5 •. 0 4.5 5.0 5.5 6.0 1.5 2.0 0.5 1.0 

0 . 
'f 

6.5 0.0 1.5 2.5 .3.0 05 1.0 2.0 3.5 4.0 4.5 5.0 5.5 6.0 

S·TIME S·TIME 

Fig. 4.17c. Contributing terms in the ~2 Reynolds Fig. 4.17d. Contributing terms in the ~2 Reynolds 
stress equations defined as 1n Eq. (4.7.1) stress equations defined as 10 Eq. (4.7.1) 
vs. St. vs. St. 

Letters in the figure numbers correspond to the individual shear-flow simulations. 



t-' 
\.J1 
\.J1 

~ 
0 

'!l 
0 

s;! 
0 

'" 0 
0 

~ 

8 
<! 
S2 
'! 

'!l 
<! 
~ 
<! 

'" N 

<! 
g 
<! 

'" .., 
'? 
~ 
<! 

PRODUCTION 
P-STRAIN 

HOMO DISP 
DIV DISP 

--= -==-=- - --

0.0 0.5 1.0 1.5 

RUV STRESS EQUATION 

0 
N 
0 

'!l 
0 

52 
0 

'" 0 
0 

g 
0 

'" 0 

'? 

52 
0 
I 

'!l 
<! 
0 
N 

<! 

'" N 

<! 
g 
<! 

'" .., 
'? 
0 . 
<! 

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 
S·TlME 

0.0 

PRODUCTION 
P-STRAIN 

HOMO DISP 
DIV DISP 

-------

0.5 1.0 

--

1.5 

RUV S rRESS EQUATION 

------------------------

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 
S.TIME 

Fig. 4.l7f. Contributing terms in the ~2 Reynolds Fig. 4.l7g. Contributing terms in the ~2 Reynolds 
stress equations defined as 1n Eq. (4.7.1) stress equations defined as in Eq. (4.7.1) 
vs. st. vs. St. 

Letters in the figure numbers correspond to the individual shear-flow simulations. 



I-' 
VI 
0\ 

RUV STRESS EQUATION 

PRODUCTION -----. 

P-STRAIN 

HOMO DISP 

DIV DISP 

'" ;; 

\? 

'" q 
0 

~ ---------
0 

:g 
? 

!? 
cf 

~ 
0 
N 

? 

'" N 

? 

~ 
? 
:g 
.; 
I 

~ 
? 

0.0 0.5 to 1.5 2.0 2.5 l.O l.5 4.0 4.5 5.0 
S-TiME 

5.5 6.0 6.5 

PRODUCTION 

P-STRAIN 

HOMO DISP 

DIV DISP 

KE EQUATION 

~rl------------------------------~ 
. 
.; 

N 
.; 

o 
.; 

N 

? 

. 
? 

.. 
? 

" ? / 

------------------------~-=-=-:-:-:-::--:--------- --

/ 
/ 

/ 

r---------------

:(, , , , , , , , , , , , I 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 

S-TIME 

Fig_ 4.17h. Contributing terms in the ~2 Reynolds Fig. 4.18a. Contributing terms in the turbulent kinetic 
stress equations defined as 1n Eq. (4.7.1) energy equation vs. St. 
VS. St. 

Letters in the figure numbers correspond to the individual shear-flow simulations. 



I-"' 
VI 
-..j 

PRODUCTION 

P-STRAIN 

HOMO DISP 

DIV DISP 

KE EQUATION 

,L----------~.=_.=.=_.=.~. 
~ 
'" ----i 
~ 

~ --o --. --8 /' 

--------

~ / 
~ / 
~ / 
~ / 
g /'" 
g /'" 
6 /'" 

i 
" iii iii iii iii 

M U W U W U ~ ~ U U U U M 
S·T1ME 

Fig. 4.l8b. Contributing terms in the turbulent 
kinetic energy equation vs. St. 

PRODUCTION 

P-STRAIN 

HOMO DISP 

DIV DISP 

KE EQUATION 

~~I------------------------------------~ . 
,; 

.., 
,; 

N 
,; 

,; 

-

::::f.=.:.:.-:.:---- -......... ~.=-~--------.--~ .. ~_.~.::-:-:-:-:-::-:_~-~-=-.~ 

o , 

N 

<! 
.., 
'7 

. --f" ---
<! "-.. ----

"-.. ----~ I ""- ...--

-------

I ~I ~ 
0.0 0.5 1.5 2.5 3.0 3.5 4.0 4.5 5.5 5.0 2.0 1.0 6.0 

S·TIME 

Fig. 4.l8c. Contributing terms in the turbulent 
kinetic energy equation vs. St. 

Letters in the figure numbers correspond to the individual shear-flow simulations. 
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Letters in the figure numbers correspond to the individual shear-flow simulations. 
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pressure-strain term is divided by the 
sum of all other contributing terms in 
the dynamic equations for bi ", the 
Reynolds stress anisotropy. fhis ratio 
is fit by least squares. The least-
squares estimate is divided by the actual 
ratio and plotted on the ordinate. The 
ratio is plotted on the abscissa. 

An estimate of C1 from the least-squares 
fitted function is divided by C1 and 
plotted on the ordinate (the origin of the 
results for each of the four nonzero equa­
tions is shifted by two for c1airty). The 
value of C1 is plotted on the abscissa. 



APPENDIX 

TABULATION OF REDUCED DATA FROM 
THE SEVEN SHEAR FLOW SI~ruLATIONS 

All quanttties are nondimensionalized on four constants: 

Density 

Sound Speed 

Reference length 

Molecular viscosity 

c 
o 

L = computational box side/21T 
o 

II (constant) 

For example, the pressure is nondimensionalized on 

2 P c 
() 0 

Quantitative values for these dimensional quantities appear nowhere 
in the simulation because we always work with t.he nondimensional 
quantities. They have simply been used as guides to give the 
simulations Reynolds, Mach, and Shear numbers that are similar to 
those found in experiments. When these numbers are formed from the 
fo.llowing length scales, etc., the dimensional quantities pc, 

0' 0 L drop out entirely. 
a. 

In this appendix, we use < > to indicate averages over the entire 
mE!sh. 
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M 

(u.u.)1/2 
< 1 1 > 

C 

Flow st M 

s = 

S 

L 
dU 0 

dy c 
o 

-1 
Re 

b 

************************************************************ 
A 4 6.40E-02 1.50£ 00 1.50£-03 
A 5 6.45£-02 1.50£ 00 1.50E.-·03 
A 6 6.54£-02 1.50£ 00 1. 50£-03 
B 4 1. 45£-0 1 1. 50E 00 2.00E-03 
B 5 1. 45E-0 1 1.50£ 00 2.00£-03 
B 6 1. 47£-0 1 1.50£ 00 2.00£-03 
C 4 3.12£-01 3.00£ 00 3.00£-03 
C 5 3.13£-01 3.00£ 00 3.00E-03 
C 6 3.16£-01 3.00E 00 3.00E-03 
0 4 2.07E-Ol 3.00E 00 2.00E-03 
0 5 2.15£-01 3.00E 00 2.00£-03 
0 6 2.22E-Ol 3.00E 00 2.00E-03 
F 4 2.38E-01 6.00£ 00 2.00£-03 
F 5 2.51£-01 6.00£ 00 2.00E-03 
F 6 2.62E-01 6.00£ 00 2.00£-03 
G 4 2.73E-01 3.00E 00 4.00E-03 
G 5 2.70E-01 3.00E 00 4.00£-03 
G 6 2.68£-01 3.00£ 00 4.00E-03 
H 4 2.50£-01 3.00£ 00 1.00E-03 
H 5 2.66E-tl1 3.00£ 00 1.00E-03 
H 6 2.81£-01 3.00£ 00 1.00E-03 
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Taylor Integral Turbulellt 
Micro Leng th Velocity 
Scale Scale 

flow st 
AU LU [ < uiu i » (1/2) 
L L 2 

0 0 c 
0 

************************************************************ 
A 4 3.24E-01 1.25E 00 8.50E-02 
A 5 3.61[-01 1.37E 00 8.65E-02 
A 6 3.98E-01 1. 52E 00 8.80E-02 
B 4 3.12E-01 1. 25E 00 1.93E-01 
e, 5 3.53E-01 1. 44E 00 1. 94E-0 1 
B, 6 3.96E-01 1.64E 00 1.97E-01 
C 4 2.85E-01 1. 22E 00 4.28E-01 
C 5 3.24E-01 1. 40E 00 4.33E-01 
C 6 3.64E-01 1.63E 00 4.39E-01 
01 4 3.12E-01 1. 22E 00 2.79E-01 
01 5 3.45E-01 1.35E 00 2.91E-01 
01 6 3.77E-01 1. 50E 00 3.01E-01 
F' 4 3.38E-01 1. 30E 00 3.25E-01 
F' 5 3.84t-01 1.46E 00 3.45E-01 
F' 6 4.27E-01 1. 61E 00 3.64E-01 
G 4 3.11E-01 1. 25E 00 3.77E-01 
(; 5 3.55E-01 1.43E 00 3.76E-01 
(j 6 4.03E-01 1. 67[ 00 3.76E-01 
B 4 2.81E-01 1. 19E 00 3.34E-01 
tl 5 3.01E-01 1. 30E 00 3.58E-01 
B 6 3.18E-01 1.43E 00 3.79E-01 
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Flow st Sl/q ReA <p,2/p2> 
0 

****************************************************** 
A 4 2.20E 01 1.84E 01 8.20E-05 
A 5 2.38E 01 2.08E 01 1.11E-04 
A 6 2.58E 01 2.33E 01 1.27E-04 
B 4 9.71E 00 3.01E 01 7.21E-04 
B 5 1. 12E 01 3.41E 01 9.38E-04 
B 6 1. 25E 01 3.90E 01 9.57E-04 
C 4 8.54E 00 4.07E 01 1.21E-02 
C 5 9.66E 00 4.68E 01 1.16[-02 
C 6 1. 11 E 01 5.33[ 01 1.20[-02 
0 4 1. 31 E 01 4.36E 01 3.17[-03 
D 5 1.39E 01 S.03E 01 3.34[-03 
0 6 1. 49E 01 5.67E 01 4.16E-03 
F 4 2.40E 01 S.49E 01 6.33E-03 
F 5 2.S3E 01 6.63E 01 5.87E-03 
F 6 2.66E 01 7.77E 01 6.14[-03 
G 4 9.97E 00 2.93[ 01 8.89E-03 
G 5 1. 14E 01 3.34E 01 8.47E-03 
G 6 1.33E 01 3. 79E 01 8.8SE-03 
H 4 1. 07E 01 9.38E 01 4.81E-03 
H 5 1. 09E 01 1.08E 02 5.53E-03 
H 6 1. 14E 01 1. 21E 02 7.17E-03 

170 



Decomposed Pressure Strain Tensor. 

Rotta Term. 

L 
l<f>ij <PI (u. + u » 0 

1,j j,i --3-
P c o 0 

l<J>ij 

F'1ow st ;=t,j=1 ;=2,j=2 i=3d=3 i=1,j=2 

************************************************************ 
A 4 -1.11[-04 1.72E-04 2.09E-05 1.33E-04 
A 5 -1. 65E-04 1.69E-04 1. 98E-05 1.41E-04 
A 6 -1.51E-04 1. 63E-04 1. 86E-05 1.37E-04 
B 4 -2.62E-03 2.40E-03 3.58E-04 1.86E-03 
B 5 -2.49E-03 2.47E-03 2.83E-04 1.83E-03 
B 6 -2.43E-03 2.40E-03 2.74E-04 1. 83E-03 
C 4 -2.55E-02 3.25E-02 3.32E-03 1. 85E-02 
C 5 -2.59E-02 3.38E-02 1. 30E-03 2.00E-02 
C 6 -2.63E-02 3.60E-02 2.42E-03 2.10E-02 
D 4 -7.97E-03 8.20E-03 1.70E-03 6.37E-03 
0 5 -8.96E-03 9.23E-03 1. 91E-03 7.48E-03 
D 6 -8.96E-0:3 1.01E-02 2.09E-03 8.43E-03 
r 4 -7.63E-03 1. 38E-02 1.34E-03 7.21E-03 
F 5 -8.01E-03 1. 28E-02 8.39E-04 8.54E-03 
r 6 -9.08[-03 1. 49E-02 2.17E-03 1.11E-02 
G 4 -1. 55E-02 2.19E-02 2.29E-03 1. 07E-02 
G 5 -1. 50[-02 2.22E-02 9.80E-04 1. 09E-02 
G G -1.44E-02 2.32E-02 1.75E-03 1. 10E-02 
H 4 -1. 67E-02 1. 51E-02 3.52E-03 1. 37E-02 
H 5 -2.04E-02 1. 82E-02 4.46E-03 1.75E-02 
H 6 -2.27E-02 2.09E-02 5.61E-03 2.14E-02 
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Decomposed Pressure Strain Tensor. 

fast Term. 

= 

Flow st i=l,j=l i=2,j=2 . / 

i=3,j=3 i=l,j=2 

f*********************************************************** 
A 
A 
A 
B 
B 
B 
C 
C 
C 
o 
D 
o 
f 
f 
f 
G 
G 
G 
H 
H 
H 

4 
5 
6 
4 
5 
6 
4 
5 
6 
4 
5 
6 
4 
5 
6 
4 
5 
6 
4 
5 
6 

-4.46E-04 -7.21E-05 
-4.65E-04 -6.90E-05 
-4.12E-04 -6.33E-05 
-3.04E-03 -5.04E-04 
-2.87E-03 -7.06E-04 
-2.52E-03 -6.52E-04 
-3.25E-02 -9.04E-03 
-3.06E-02 -1.12E-02 
-2.49E-02 -1.47E-02 
-1.09E-02 -2.99E-03 
-1.10E-02 -4.01E-03 
-9.16E-03 -5.15E-03 
-2.28E-02 -1.37E-02 
-1.97[-02 -1.40[-02 
-1.59E-02 -1.50E-02 
-2.57E-02 -7.21E-03 
-2.35E-02 -8.77E-03 
-1.82E-02 -1.15E-02 
-1.49E-02 -4.23E-03 
-1.58[-02 -5.76E-03 
-1.44E-02 -7.55E-03 
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4.84E-04 
4.23E-04 
3.71E-04 
3.21E-03 
2.86E-03 
2.38E-03 
2.49E-02 
2.10E-02 
1.80E-02 
8.96E-03 
7.74E-03 
6.94E-03 
1.21E-02 
9.38[-03 
'S.24E-03 
1.94E-02 
1.54E-02 
1.27E-02 
1.27E-02 
1.21E-02 
1. 17E-02 

2.53E-04 
2.40E-04 
2.01E-04 
1.85E-03 
1.63E-03 
1.31E-03 
1.62E-02 
1.51E-02 
1.30E-02 
5.04E-03 
5.15E-03 
4.39E-03 
1.24E-02 
1.07E-02 
9.04E-03 
1.23E-02 
1.14E-02 
9.46E-03 
7.06E-03 
7.55E-03 
6.94E-03 



Decomposed Pressure Strain Tensor. 

Compressible Term. 

Flow st i=1,j::1 i=2.j=2 

************************************************************ 
A. 4 -3.81E-04 -5.57E-05 4.88E-04 2.53E-04 
A, 5 -5.23E-04 -7.29E-05 4.50E-04 2.95E-04 
A 6 ~3.81E-04 3.62E-05 4.31E-04 2.19E-04 
B 4 -2.68E-03 -6.37E-04 3.52E-03 2.27E-03 
B 5 -3.37E-03 -4.62E-04 3.17E-03 2.50E-03 
EI 6 -2.81E-03 1. 15E-04 2.85E-03 1.85E-03 
c: 4 -3.40E-02 2.01E-03 3.62E-02 2.30E-02 
c: 5 -3.81E-02 -3.40E-03 3.40E-02 2.64E-02 
c: 6 -2.86E-02 1.71E-03 3.29E-02 2.19E-02 
[t 4 -1. 02E-02 8.13E-04 1. 14E-02 5.49E-03 
[I 5 -1.16E-02 -2.56E-04 9.73E-03 6.22E-03 
[J 6 -1.13E-02 -5.15E-04 1. 18E-02 7.25E-03 
r 4 -3.93E-02 8.01E-03 2.97E-02 2.89E-02 
f' 5 -2.93E-02 1.84E-02 2.14E-02 2. 13E-02 
F 6 -3.35E-02 9.16E-03 1.58E-02 3.11E-02 
(j 4 -2.66E-02 3.18E-03 2.74E-02 1.72E-02 
Ii 5 -2.99(-02 -4.62E-04 2.40E-02 1. 99E-02 
(j 6 -2.22[-02 4.20E-03 2.38E-02 1.63E-02 
B 4 -1.36[-02 -4.39E-04 1. 66E-02 7.32E-03 
Ii 5 -1.57[-02 -2.87E-03 1. 59E-02 8.47E-03 
Ii 6 -1.60[-02 -3.57E-03 2.00E-02 1.02E-02 
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Decomposed Reynolds stress Tensor. 

Incompressible Part. 

Flow st i=1,j=2 i=l,j=l i=2,j=2 i=3,j=3 

************************************************************ 
A 4 -1.30E-03 4.50(-03 7.59(-04 1. 91(-03 
A 5 -1.25E-03 4.96(-03 6.29E-04 1.83E-03 
A 6 -1. 17t-03 5.30E-03 5.38E-04 1.81E-03 
B 4 -6.94E-03 2.05E-02 5.61E-03 1. 09(-02 
B 5 -6. GOE-03 2.15(-02 4.81E-03 1.07E-02 
B 6 -6.41E-03 2.29(-02 4.27E-03 1.08E-02 
C 4 -3.33E-02 9.99E-02 2.57E-02 4.92E-02 
C 5 -3.15(-02 1.06(-01 2.27(-02 4.84E-02 
C 6 -3.10E-02 1.13(-01 2.04E-02 4.81E-02 
0 4 -1.45E-02 4.84E-02 8.54E-03 1. 90E-02 
0 5 -1. 45E-02 5.46(-02 7.86E-03 1.90(-02 
0 6 -1. 43E-02 6.03E-02 7.21[-03 1.94E-02 
F 4 -1.82E-02 7.21(-02 7.74[-03 1.96E-02 
F 5 -1. 85E-02 8.66(-02 6.87(-03 1. 88E-02 
F 6 -1. 83E-02 1.00£-01 6.22E-03 1.85£-02 
G 4 -2.59E-02 7.90E-02 1.87E-02 3.77E-02 
G 5 -2.37E-02 8.16E-02 1. 54E-02 3.51£-02 
G 6 -2.23E-02 8.54E-02 1. 30E-02 3.42E-02 
H 4 -2.09E-02 6.79E-02 1. 34E-02 2.74£-02 
H 5 -2.22E-02 8.01E-02 1.38E-02 2.93E-02 
H 6 -2.34£-02 9.23(-02 1.43E-02 3.19£-02 
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Decomposed Reynolds stress Tensor. 

Compressible Part. 

Flow st i=1.j=2 ;=1.;=1 i=2,;=2 ;=3.j=3 

************************************************************ 
A 
A 
A 
B 
B 
B 
C 
C 
C 
D 
D 
D 
f 
f 
f 
G 
G 
G 
H 
H 
H 

4 
5 
6 
4 
5 
6 
4 
5 
6 
4 
5 
6 
4 
5 
6 
4 
5 
6 
4 
5 
6 

-1.30E-06 
-2.27E-05 
-3.18E-05 
-2.40E-05 
- 1. 14E-04 
-2. 13E-04 
- 1. 57[-03 
-2.69E-03 
-2.02E-03 
-4.88E-04 
-9.65E-04 
-7.13E-04 
- 1. 36E-03 
-1. 16E-03 
- 1. 25E-03 
-1.39E-03 
-2.30E-03 
-1.67E-03 
-5.57E-04 
-1. 17E-03 
-8.89E-04 
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4.65E-05 -3.08E-05 
4.69E-05 7.29E-06 
7.17E-05 -6.68E-07 
3.21E-04 -1.90E-04 
2.66E-04 4.54E-05 
3.93E-04 4.23E-05 
3.97£-03 1.13E-03 
4.69E-03 2.48E-03 
3.29E-03 4.65E-03 
1.21E-03 2.86[-04 
1.61E-03 9.38E-04 
1.05E-03 1.73E-03 
2.56E-03 2.27E-03 
2.54E-03 2.55[-03 
2.43[-03 3.32E-03 
3.38[-03 9.19E-04 
3.93E-03 2.08E-03 
2.52E-03 3.89E-03 
1.44E-03 3.97E-04 
2.01E-03 1.17E-03 
1.35E-03 2.23E-03 

2.73E-05 
6.52E-06 
3.79E-05 
1.52E-04 
5.65E-05 
2.88E-04 
1. 38E-03 
1. 80E-03 
1.90E-03 
4.73E-04 
4.84E-04 
5.42E-04 
1. 08E-03 
1.44E-03 
9.04E-04 
1.22E-03 
1. 50E-03 
1. 50E-03 
5.07E-04 
5.53[-04 
6.68E-04 



Homogeneous Dissipation Tensor. 

flow 

H 
D •• 

1.J 

st i=1.j=1 ;=2,j=2 i=3,j=3 

************************************************************ 
A 4 2.09[-03 2.59[-04 1. 16[-03 
A 5 2.14E-03 2.05E-04 9.69E-04 
A 6 2.14E-03 1.74[-04 8.39[-04 
B 4 1.01E-02 2.45E-03 6.41E-03 
B 5 9.42E-03 1. 98E-03 5.53[-03 
B 6 9.08E-03 1.74E-03 4.92E-03 
C 4 8.47E-02 2.53E-02 5.26E-02 
C 5 8.09E-02 2.19E-02 4.65[-02 
C 6 7.86[-02 2.09E-02 4.20[-02 
D 4 3.13[-02 5.68E-03 1.45[-02 
0 5 3.34E-02 5.38E-03 1. 32[-02 
D 6 3.50[-02 5.46E-03 1.27E-02 
F 4 5.26E-02 7.93[-03 1.84[-02 
F 5 6.22E-02 7.13E-03 1.66[-02 
F 6 7.02E-02 7.32[-03 1.54E-02 
G 4 7.90[-02 2.06[-02 4.77[-02 
G 5 7.32E-02 1.69E-02 4.04[-02 
G 6 6.90E-02 1.57[-02 3.49[-02 
H 4 2.59E-02 5.72[-03 1.20E-02 
H 5 2.98E-02 6.10E-03 1.21[-02 
H 6 3.33E-02 6.79E-03 1.27[-02 
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Homogeneous Dissipation Tensor. 

H 
Di' J 

flow 

-1 
Reb < U, k U, k> X 

1, J, 

st ;=1,j=2 

2 c 
o 

;=1,;=3 i=2,;=3 

************************************************************ 
A 
A 
A 
B 
B 
B 
C 
C 
C 
D 
D 
o 
f 
f 
f 
G 
G 
G 
H 
H 
H 

4 
5 
6 
4 
5 
6 
4 
5 
6 
4 
5 
6 
4 
5 
6 
4 
5 
6 
4 
5 
6 

-4.54E-04 -1.67E-06 8.39E-06 
-3.81E-04 -3.21E-06 2.70E-06 
-3.22E-04 -5.15E-06 -1.66E-06 
-2.63E-03 3.13E-05 3.20E-05 
-2.12E-03 -8.28E-06 3.20E-05 
-1.83E-03 -3.21E-05 6.52E-06 
-2.28E-02 3.07E-04 4.88E-04 
-1.90E-02 -1.26E-04 3.18E-04 
-1.64E-02 -5.95E-04 4.77E-05 
-7.82E-03 4.96E-06 9.38E-05 
-7.25E-03 1.75E-04 -7.21E-06 
-6.56E-03 5.49E-06 -1.82E-04 
-1.21E-02 2.04E-05 1.40E-04 
-1.19E-02 3.68E-04 -2.50E-05 
-1.14E-02 2.07E-04 -1.83E-04 
-2.12E-02 2.03E-04 5.00E-04 
-1.71E-02 -1.77E-04 2.76E-04 
-1.42E-02 -5.15E-04 -1.11E-04 
-6.68E-03 9.38E-06 8.32E-05 
-6.79E-03 1.87E-04 -1.50E-05 
-6.64E-03 8.01E-05 -1.58E-04 
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Intensities of the decomposed pressure fields. 

Roth Fast Compr. 

,2 ,2 ,2 
< 

p 1 P 2 P 3 > < > < > 
( c2) 2 ( c 2)2 ( c 2)2 Po 0 Po 0 Po 0 

Flow st 

************************************************************ 
A 4 5.95E-06 2.04E-05 7.71E-05 
A 5 5.53E-06 2.45E-05 1.21E-04 
A 6 5.04E-06 2.24E-05 1.68E-04 
B 4 1.75E-04 1.58E-04 6.33E-04 
B 5 1.62E-04 1.82E-04 1.02E-03 
B 6 1.57E-04 1.53E-04 1.22E-03 
C 4 4.08E-03 1.80E-03 1.59E-02 
C 5 3.97E-03 2.00E-03 1. 67E-02 
c 6 3.93E-03 1.78E-03 2.12E-02 
0 4 7.10E-04 5.11E-04 4.16E-03 
0 5 7.36E-04 6.18E-04 4.65E-03 
0 6 7.59E-04 5.95E-04 6.83E-03 
f 4 1.20E-03 1. 17E-03 1.03E-02 
f 5 1.24E-03 1.32E-03 1.05E-02 
f 6 1.23E,..03 1.16E-03 1.13E-02 
G 4 2.55E-03 1.51E-03 1.29E-02 
G 5 2.32E-03 1.63E-03 1.32E-02 
G 6 2.20E-03 1.41E-03 1.69E-02 
H 4 1.41E-03 6.33E-04 5.46E-03 
H 5 1.64E-03 8.05E-04 6.29E-03 
H 6 1.90E-03 8.13E-04 9.46E-03 
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